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Abstract

Reference monitor inlining is a technique for enforcing security policies
by injecting security checks into the untrusted software in a style similar to
aspect-oriented programming. The intention is that the injected code enforces
compliance with the policy (security), without adding behavior (conservativity)
or affecting existing policy compliant behavior (transparency).

This thesis consists of four papers which covers a range of topics including
formalization of monitor inlining correctness properties, certification of inlined
monitors, limitations in multithreaded settings and extensions using data-flow
monitoring.

The first paper addresses the problem of having a potentially complex pro-
gram rewriter as part of the trusted computing base. By means of proof-
carrying code we show how the inliner can be replaced by a relatively simple
proof-checker. This technique also enables the use of monitor inlining for qual-
ity assurance at development time, while minimizing the need for post-shipping
code rewrites.

The second paper focuses on the issues associated with monitor inlining
in a concurrent setting. Specifically, it discusses the problem of maintaining
transparency when introducing locks for synchronizing monitor state reads and
updates. Due to Java’s relaxed memory model, it turns out to be impossible for
a monitor to be entirely transparent without sacrificing the security property.
To accommodate for this, the paper proposes a set of new correctness properties
shown to be realistic and realizable.

The third paper also focuses on problems due to concurrency and identi-
fies a class of race-free policies that precisely characterizes the set of inlineable
policies. This is done by showing that inlining of a policy outside this class is
either not secure or not transparent, and by exhibiting a concrete algorithm for
inlining of policies inside the class which is secure, conservative, and transpar-
ent. The paper also discusses how certification in the style of proof-carrying
code could be supported in multithreaded Java programs.

The fourth paper formalizes a new type of data centric runtime monitoring
which combines monitor inlining with taint tracking. As opposed to ordinary
techniques which focus on monitoring linear flows of events, the approach pre-
sented here relies on tree shaped traces. The paper describes how the approach
can be efficiently implemented and presents a denotational semantics for a sim-
ple “while” language illustrating how the theoretical foundations is to be used
in a practical setting.

Each paper is concluded by a practical evaluation of the theoretical results,
based on a prototype implementation and case studies on real-world applica-
tions and policies.
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Sammanfattning

Referensmonitorinvävning, eller monitorinvävning, är en teknik som an-
vänds för att se till att en given säkerhetspolicy efterföljs under exekvering av
potentiellt skadlig kod. Tekniken går ut på att bädda in en uppsättning sä-
kerhetskontroller (en säkerhetsmonitor) i koden på ett sätt som kan jämföras
med aspektorienterad programmering. Syftet med den invävda monitorn är att
garantera att policyn efterföljs (säkerhet) utan att påverka ursprungsprogram-
mets beteende, såvida det följer policyn (transparans och konservativitet).

Denna avhandling innefattar fyra artiklar som tillsammans täcker in en
rad ämnen rörande monitorinvävning. Bland annat diskuteras formalisering av
korrekthetsegenskaper hos invävda monitorer, certifiering av invävda monito-
rer, begränsningar i multitrådade program och utökningar för hantering av
dataflödesmonitorering.

Den första artikeln behandlar problemen associerade med att ha en po-
tentiellt komplex programmodifierare som del i den säkerhetskritiska kompo-
nenten av ett datorsystem. Genom så kallad bevisbärande kod visar vi hur
en monitorinvävare kan ersättas av en relativt enkel beviskontrollerare. Denna
teknik möjliggör även användandet av monitorinvävning som hjälpmedel för
programutvecklare och eliminerar behovet av programmodifikationer efter att
programmet distribuerats.

Den andra artikeln fokuserar på problemen kring invävning av monitorer
i multitrådade program. Artikeln diskuterar problemen kring att upprätthålla
transparans trots införandet av lås för synkronisering av läsningar av och skriv-
ningar till säkerhetstillståndet. På grund av Javas minnesmodell visar det sig
dock omöjligt att bädda in en säkerhetsmonitor på ett säkert och transparent
sätt. För att ackommodera för detta föreslås en ny uppsättning korrekthetse-
genskaper som visas vara realistiska och realiserbara.

Den tredje artikeln fokuserar även den på problemen kring flertrådad ex-
ekvering och karaktäriserar en egenskap för en policy som är tillräcklig och
nödvändig för att både säkerhet och transparens ska uppnås. Detta görs ge-
nom att visa att en policy utan egenskapen inte kan upprätthållas på ett säkert
och transparent sätt, och genom att beskriva en implementation av en moni-
torinvävare som är säker och transparent för en policy som har egenskapen.
Artikeln diskuterar också hur certifiering av säkerhetsmonitorer i flertrådade
program kan realiseras genom bevisbärande kod.

Den fjärde artikeln beskriver en ny typ av datacentrisk säkerhetsmonitore-
ring som kombinerar monitorinvävning med dataflödesanalys. Till skillnad mot
existerande tekniker som fokuserar på linjära sekvenser av säkerhetskritiska
händelser förlitar sig tekniken som presenteras här på trädformade händelse-
sekvenser. Artikeln beskriver hur tekniken kan implementeras på ett effektivt
sätt med hjälp av abstraktion.

Varje artikel avslutas med en praktisk evaluering av de teoretiska resultaten
baserat på en prototypimplementation och fallstudier av verkliga program och
säkerhetsegenskaper.
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Chapter 1

Introduction

During the summer of 2007 Dan Egerstad, a Swedish security consultant, carried out
an experiment. Just like many other internet users around the globe he connected
his computer to an anonymization network called The Onion Router (Tor) [125].
When a user connects to Tor, his or her traffic is no longer routed directly from
source to destination. Instead the traffic takes random detours via the computers
of other Tor users. When the data reaches its final destination—or if someone in-
tercepts it in transit—it is virtually impossible to tell who the original sender is.
The reason Dan connected to Tor was not however, to use the web anonymously;
the purpose was to monitor the traffic being routed through his node in the net-
work. In particular he wanted to highlight the fact that ordinary e-mail protocols
are unencrypted and point at the risks you run by fetching your e-mail over an
untrusted connection. After a couple of weeks Dan went through his network logs,
and what he found was breathtaking. Usernames and passwords of thousands of
email accounts had been logged. The accounts belonged to, among others, the De-
fense Research and Development Organization in India, foreign ministry of Iran,
journalists working for large international newspapers, employees of multinational
companies and numerous embassies belonging to Australia, Japan, Iran, India and
Russia [60, 55]. What puzzled Dan at the time was how so many politicians, top
diplomats and journalists had misunderstood the purpose and workings of Tor. To-
day he is convinced that the accounts that passed through his computer had already
been compromised, and the reason he found them circulating in the Tor network
was simply because the hackers in control of them did not want to reveal their
identities [60].

Malicious code and hackers with bad intents have been around ever since mul-
tiuser systems emerged in the 1960s. Despite technological advancements the secu-
rity challenges persist and as experiments like the one described above show, the
field of computer security research is more relevant today than ever before. Refer-
ence Monitoring and Security Policy enforcement are central concepts in mitigating
for instance injection attacks, trojan horses, access violations and other problems
which for instance can lead to disclosure of credentials such as e-mail usernames and

1



2 CHAPTER 1. INTRODUCTION

passwords. This thesis discusses a specific approach to security policy enforcement
called reference monitor inlining with emphasis on three aspects:

• How to deal with concurrency.

• How to certify the existence of an inlined reference monitor.

• How to naturally express and enforce policies with more sophisticated API-
protocol constraints and data dependencies.

The rest of this introduction is laid out as follows. First a brief historical sur-
vey of the field of computer security research is presented, with emphasis on topics
relevant for this thesis (Section 1.1). This is followed by an introduction to the
concept of reference monitoring in general and reference monitor inlining in par-
ticular (Section 1.2). The motivation for studying the topics covered in this thesis
is then presented (Section 1.3). Finally an overview of the thesis and the author
contributions are given with brief descriptions of each included paper (Section 1.4).

1.1 Background
Computer security has its origins in the 1960s when multiuser systems were de-
veloped and put to use. The computers were operated by government agencies,
universities and larger corporations. As the systems started to process confidential
information such as military documents and unclassified but sensitive data such as
personal information about citizens the need to protect the system from its users,
and the users from each other emerged [56].

In the early 1970s two reports were published which can be viewed as the foun-
dation of the subsequent research and as the start of computer security as a field
of research in its own right. In February 1970 the report Security Controls for
Computer Systems by W. Ware from the RAND Corporation [135] was published.
This report summarized the technical foundations that the field of computer secu-
rity had acquired by the end of the 1960s. As with most security research at the
time, [73, 111, 137], it focused on how to protect classified information on multilevel
resource-sharing computer systems used in the US defense sector. The report by
Ware was followed by the Computer Security Technology Planning Study by J. P.
Anderson, published in 1972. The study was conducted on behalf of the US Air
Force and the intention was to

“[...] develop a comprehensive plan for research and development leading
to the satisfaction of requirements for multi-user open computer systems
which process various levels of classified and unclassified information si-
multaneously through terminals in both secure and insecure areas. [...]”

The research programs triggered by the Anderson report led to, among other
things, the development of a formal state transition model for enforcing access
control in government and military applications. The first revision of the model
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was developed by D. E. Bell and L. J. LaPadula in 1973, [10] and became known as
the Bell-LaPadula model. Just as this theoretical model influenced the design and
implementation of the operating systems at the time, the operating system engineers
provided valuable feedback to the development of the theory. Bell and LaPadula
refined the model and published the results the following years [77, 8, 11]. The core
idea can be summarized in two mandatory and one discretionary access control
rules [11]: (a) A subject at a given security level may not observe an object at a
higher security level (“no read-up”), (b) a subject at a given security level must not
write to any object at a lower security level (“no write-down”), and (c) every access
should be governed by a discretionary access control matrix. The rules ensure the
perseverance of the so called simple security (SS) property, the ?-property and the
discretionary security (DS) property respectively. These three properties establishes
total system security by inductively ensuring that the security is preserved from one
state to the next.

During the late 1970s and the 1980s there was a concentrated effort in trying to
realize an operating system with security as one of its primary design objectives [9].
Several attempts were made and among the most prominent ones we find the Ker-
nelized Secure Operating System (KSOS) [47, 91], the Provably Secure Operating
System (PSOS) [97, 45, 98], the Kernelized Virtual Machine (KVM) [110] and the
Multics operating system [107, 108, 74, 136]. Multics had a significant impact in the
field of computer security research. Despite being the first major operating system
designed for security, it was however still broken into repeatedly [132]. One notable
security issue caused the entire password file to be used as the message-of-the-day.
The problem was caused by a bug which was triggered when multiple administrators
opened a text editor at the same time [21]. This error was an early demonstration of
the security problems associated with concurrency, which is one of the main topics
of this thesis.

As the systems became more complex and as more systems were put to use the
need to be able to evaluate and classify the systems in terms of security emerged.
Steve Walker at the Office of Secretary of Defense formulated the Computer Security
Initiative which resulted in, among other things, the publication Trusted Computer
Security Evaluation Criteria (The Orange Book) initially published in 1983 and
revised in 1985, [31]. The purpose of the document was to

“[...] (a) provide users with a yardstick with which to assess the degree
of trust that can be placed in computer systems for the secure process-
ing of classified or other sensitive information; (b) to provide guidance
to manufacturers as to what to build into their new, widely-available
trusted commercial products in order to satisfy trust requirements for
sensitive applications; and (c) to provide a basis for specifying security
requirements in acquisition specifications. [...]”

The document defines four security divisions and seven security classes incremen-
tally, i.e. the requirements of the lower classes are automatically inherited by higher
ones. The requirements concern the security-relevant parts of a system, i.e. the
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Division Class
A Verified Protection A1 Verified Design

B Mandatory Protection B3 Security Domains

B2 Structured Protection

B1 Labelled Security Protection

C Discretionary Protection C2 Controlled Access Protection

C1 Discretionary Security Protection

D Minimal Protection

Table 1.1: The Orange Book security divisions and classes.

trusted computing base (TCB). The security divisions range from A to D as shown
in Table 1.1. The D-class is basically reserved for systems that fail to meet the
requirements for a higher division (i.e. “no security”). On the other end of the
scale we have the A1-systems which, while functionally equivalent to B3-systems,
require a formal model of the security policy, a formal top level specification and
a consistency proof between the model and the specification. The policies in the
Orange Book, discretionary access control and mandatory access control based on
a lattice of security labels, could for instance be satisfied by systems implementing
the Bell-LaPadula model, but other models have also been used in Orange Book
evaluations. The standard approach of security policy enforcement is to have a
reference monitor (a term introduced in detail in Section 1.2) which verifies that
subjects are authorized to access the objects they request.

Given the strict requirements on analysis of the TCB in the higher classes such
as A1, systems with a complex TCB tend to fall into the lower evaluation classes.
Keeping the TCB simple (which allows for a more comprehensive analysis) is thus
of high importance. How to utilize inlined reference monitoring as a security en-
forcement mechanism without having to include a complex monitor inliner in the
TCB is another topic of this thesis.

By the end of the 1980s a computer no longer required a dedicated room and
staff to operate and when the computer was placed on a desk in someone’s office,
it effectively became a single user machine. In a single user operating system such
as the mass-market CP/M, MS-DOS or AmigaOS the aspects of multi-level and
multi-user security became meaningless. According to some experts, this triggered
a degrade of computer security, according to others the issues were not due to the
single-user operating systems per see, but rather due to the fact that they were
eventually put to use outside their intended environment [56].

During the 1980s PC users also experienced the first computer viruses, worms
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and trojan horses. The first virus believed to go outside of the computer system on
which it was developed was Elk Cloner, written by Richard Skrenta in 1982 [70].
This virus spread by infecting the boot sector of the floppy disks storing the Apple
II operating system. Apart from that, it did no harm. Viruses continued to evolve
during the late 1980s and many operating systems were affected including MS-
DOS, AmigaOS and ProDOS. During late 1990s the first macro viruses (viruses
embedded in documents in the form of macro code) started to spread. The first
macro virus, Concept, appeared in July 1995 [114] and infected Microsoft Word
documents. Another famous example of a macro virus that spread during the 1990s
was the Melissa virus which spread through Microsoft Outlook e-mail clients. As will
be discussed in Section 1.3, the technique of enforcing security policies by inlining
a reference monitor into a program can be particularly effective against this type of
viruses.

The prerequisites for viruses to spread is (a) the technological platform, i.e. a
computing device that can accept and run 3rd party code, and (b) a critical mass of
users [51]. During the 2000s these conditions were met for PDAs and smartphones
running operating systems such as PalmOS, Symbian and Windows CE. One of the
earliest PDA malware was a trojan horse called Palm.Liberty.A. Installing it on a
PalmOS device caused other applications to be deleted [138]. The spread of the
trojan horse was limited since it relied upon victims downloading it and installing
it themselves. It did not take long however, until the malware started to copy itself
from device to device through infrared interfaces and through Bluetooth [51, 15, 69].

Today the way malware is spread to smartphones resembles the way it is spread
to desktop computers: Users download and install programs from untrusted sources
over the Internet [46]. The software distribution channels and security mechanisms
on the other hand differs. Desktop systems typically allow the user to download
and install software from arbitrary servers and webpages. The system is then con-
tinuously monitored by antivirus software which scans the file system for malware.
On a smartphone the user typically installs software from within a centralized ap-
plication store. Each downloaded application requests a set of permissions which
the user grants before the installation or during the first launch of the program.
The operating system then ensures that the software does not exceed its granted
permissions by means of a reference monitor. The first approach, which can be
compared to a blacklisting of disallowed behavior, has the disadvantage that there
is no way to exhaustively list current and future malicious software. The second
approach, which analogously can be seen as a white listing of allowed behavior, has
the disadvantage that many innocent tasks often require a combination of permis-
sions that could be used maliciously. How to tackle the latter problem is the topic
of the last paper of this thesis.
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1.2 Reference Monitors
The concept of reference monitors (or reference validation mechanisms) was first in-
troduced in the Computer Security Technology Planning Study published in 1972 [3].
The definition from this publication states that the function of a reference monitor
is to “validate all references (to programs, data, peripherals, etc.) made by programs
in execution against those authorized for the subject (user, etc.).” The report then
lists three requirements that must be met by a reference validation mechanism:

1. The reference validation mechanism must be tamper proof.

2. The reference validation mechanism must always be invoked.

3. The reference validation mechanism must be small enough to be subject to
analysis and tests to assure that it is correct. [3]

The first property says that there should be no way to (programmatically or
manually) alter the security mechanism. The rationale behind this requirement is
to provide a guarantee of the integrity of the mechanism. The second property
(which is commonly referred to as complete mediation) states that the reference
monitor must be consulted upon each security relevant action (SRA), regardless of
when and how it is performed. Finally, the third property states that the mechanism
must be amenable to formal analysis, which is a property relevant also for the TCB
as a whole.

While the three security properties are still important and accurate, the defi-
nition of a reference monitor has been generalized slightly. The Orange Book [31]
defines a reference monitor as follows:

Reference Monitor Concept - An access control concept that refers to
an abstract machine that mediates all accesses to objects by subjects.

Since the concept of a reference monitor is quite general it encompasses most
runtime security enforcement in a system. In a layered system design, reference
monitors can in principle be placed on any level [56]. On the lowest level of a sys-
tem a reference monitor is typically implemented in hardware and used as a core
mechanism for protecting the integrity of the operating system and for controlling
access to memory [56, 103] (Figure 1.1a). A reference monitor can also be imple-
mented in software as part of the operating system to for instance enforce a file
access policy (Figure 1.1b). For code that is interpreted such as scripts and byte-
code, a reference monitor could be implemented in for instance the Javascript engine
of a web browser or as a security manager of a Java virtual machine (Figure 1.1c).
Finally, a reference monitor could be embedded, or inlined, into the program which
is to be monitored (Figure 1.1d). This thesis focuses on the latter approach.

Each design choice has its advantages and disadvantages. The lower the level is
at which the reference monitor operates, the fewer primitives (and ways to invoke
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(a) Hardware reference monitor.
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(c) As part of the virtual machine.
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(d) Embedded in the application which
is to be monitored.

Figure 1.1: Reference Monitor implementation strategies.

these) it has to consider. This makes it easier to argue that all accesses performed
in the system are indeed observed by the monitor, i.e. that the reference monitor
follows the principle of complete mediation. Not all policies however can be suitably
expressed at such low level of abstraction. A security policy for a script in a web
page for instance is usually expressed in terms of DOM accesses. In such case a
higher level reference monitor is more appropriate. This will be discussed further
in Section 1.3.

1.2.1 Reference Monitor Inlining

The idea of embedding the reference monitor into the program which is to be mon-
itored and, in effect, create a self-monitoring program was first explored by F. B.
Schneider and Ú. Erlingsson in 1990 [41]. The classical approach to monitor inlin-
ing relies on having a program rewriter, or inliner as part of the TCB. Whenever a
program is downloaded, installed or launched for the first time, the inliner rewrites
the program so that the program itself checks that every security relevant instruc-
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Target Program

Self-monitoring
Program

Inliner
Security Policy

Figure 1.2: Monitor inlining overview.

tion is executed only after it has been checked and found not to be violating the
security policy. The inliner does this by parsing a description of a policy, compiling
it into snippets of code and then weaving these snippets into appropriate places in
the code of the target application. Figure 1.2 illustrates the idea. An example of a
reference monitor inlining follows.

Example 1 (Reference Monitor Inlining). Given a program which calls a method
sendSMS (Figure 1.3a) and a policy stating that at most five such calls may be
performed (Figure 1.3b), an inliner would do the following (Figure 1.3c):

1. Add a counter for the number of sendSMS-calls, that has been performed (*).
This counter would represent the monitor state (also referred to as the security
state).

2. Add code in connection to each call to sendSMS that

a) terminates the execution if the SMS counter has reached the maximum
value (**)

b) increments the counter after the call has been performed (***)

The monitoring code in the example above implements what is called a trunca-
tion monitor since it terminates the execution whenever the program is about to
violate the policy. While there exists other approaches to avoiding a policy viola-
tion (for instance throwing an exception [128] or inserting a remedial action such
as showing an error dialog to the user [83]), we will in this thesis focus on monitors
that halt the execution.
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. . .
sendSMS()
. . .

(a) Target program excerpt.

Security State smsesSent = 0

Before sendSMS()
Assert smsesSent < 5

After sendSMS()
smsesSent = smsesSent + 1

(b) Send at most 5 SMSes policy.

. . .
int smsesSent = 0 // Security state (global variable) (*)
. . .

. . .

If (smsesSent ≥ 5) // Security state check (**)exit()

sendSMS() // Original method call

smsesSent = smsesSent + 1 // Security state update (***)
. . .

(c) Resulting self-monitoring program.

Figure 1.3: Inlining example

If the application in Example 1 would have had multiple calls to sendSMS , the
inliner would have been required to either insert monitoring code for each one of
them, or to create a secure wrapper method for sendSMS , and reroute calls to the
wrapper method instead. To modify the actual implementation of sendSMS and
add the monitoring code inside that method is however not always an option since
the security relevant method in question may be part of a shared library and it
may not be appropriate to enforce the same policy for all clients of this library.
Restricting the modifications to the client code also allows programs with inlined
monitors to be deployed in a standard unmodified runtime environment, since the
self-monitoring application is executed just as any other application. An inliner
which only modifies client code is referred to as a client-side inliner and it is this
type of inliner that is the focus of this thesis.
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Thread 1: Thread 2:
If (smsesSent ≥ 5)

exit()
If (smsesSent ≥ 5)

exit()
sendSMS()
smsesSent = smsesSent + 1

sendSMS() (possible violation!)
smsesSent = smsesSent + 1

Figure 1.4: Problematic interleaving of inlined code.

acquireLock()
If (smsesSent ≥ 5)

exit()

sendSMS()

smsesSent = smsesSent + 1
releaseLock()

(a) Blocking Inlining

acquireLock()
If (smsesSent ≥ 5)

exit()
releaseLock()

sendSMS()

acquireLock()
smsesSent = smsesSent + 1
releaseLock()

(b) Non-blocking Inlining

Figure 1.5: Blocking vs non-blocking inlining schemes.

Concurrency

In a single threaded setting, the inlined monitoring code in Example 1 is perfectly
secure. In a multithreaded setting however, this is not the case. Consider what
could potentially happen if two threads executed the inlined code simultaneously
as shown in Figure 1.4. Clearly, this execution would violate the policy if four
SMSes had already been sent. To avoid this type of interleaving and to guarantee
policy adherence in a multithreaded setting, the inlined reference monitor could
use a lock which it acquired before executing the inlined code, and released after
the monitor code has completed, as shown in Figure 1.5a. This would rule out
the problematic interleaving described above. An inliner that generates monitors
according to this scheme is referred to as a blocking inliner, since it blocks other
threads from executing SRAs in parallel. The main issue is of course that the
SRAs are serialized with potentially large performance impacts (or in rare cases
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Security State smsesSent = 0

Before sendSMS()
Assert smsesSent < 5
smsesSent = smsesSent + 1

acquireLock()
If (smsesSent ≥ 5)

exit()
smsesSent = smsesSent + 1
releaseLock()
sendSMS()

Figure 1.6: A race free version of the policy in Figure 1.3b and a secure non-blocking
monitor inlining.

even deadlocks) as a result. The implications of enforcing policies using a blocking
inliner are discussed in Chapter 3.

In an attempt to remedy this, one might try to release the lock temporarily
under the duration of the API-call, as shown in Figure 1.5b. This would be the
result of what we refer to as a non-blocking inlining. For this particular example
however, this defeats the purpose of the lock, since the problematic interleaving
described in Figure 1.4 is again a valid scheduling.

The policy, as it is expressed in Figure 1.3b, turns out to be impossible to enforce
(without serializing all SRAs) in a multithreaded setting. To enforce the policy in a
multithreaded setting, the policy needs to be reformulated and inlined as described
in Figure 1.6. As opposed to the original policy, the policy in Figure 1.6 is race free.
The exact characterization of race free policies (i.e. policies that can be securely
enforced by a non-blocking inliner) is one of the main contributions of the paper
presented in Chapter 4.

Inlining Correctness Properties

The three correctness properties mentioned in the Anderson report [3] concern se-
curity, i.e. they are intended to establish that the systems security policy is properly
enforced by the reference monitor. When implementing the mechanism by program
rewriting, another correctness aspect comes into play, namely the aspect of preserv-
ing the original behavior of the program. (An inliner that inserts a call to exit()
before the first instruction ensures that any security policy is enforced, but is ar-
guably not correctly implemented.) The notion of preserving the behavior of the
target program is formally divided into conservativity and transparency. An inliner
that does not add any behavior is conservative and an inliner that does not remove
any behavior (apart from policy violating behavior) is transparent [82].

As briefly demonstrated in Section 1.2.1, there is a class of policies (the non-race-
free policies) that can only be enforced using a blocking inliner. Since a blocking
inliner excludes certain schedulings of the original program, this type of inliner is
however not transparent for all policies and multithreaded programs. To charac-
terize the correct behavior for blocking inliners the paper presented in Chapter 3
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refines the notion of conservativity and proposes a property called strong conserva-
tivity which captures the idea of terminating the application only when the policy
would have been violated.

1.2.2 Linear vs Tree based Monitoring

The classical approach to security monitoring (which we henceforth refer to as linear
monitoring) builds on a model in which a program performs a linear sequence of
security critical function calls. These sequences are observed by monitors defined
in terms of deterministic finite automata [25, 39, 64]—which will be discussed in
the first, second and third paper of this thesis— edit automata [84], linear temporal
logic [71, 104, 67, 115, 141, 140] or context free grammars [92, 116].

Tree based monitoring on the other hand (introduced in detail in the fourth
paper of this thesis), relies on a different model in which the actions of a program
are described in terms of trees of function calls. If for example x is a result of a call
to f() and y is the result of a call to g() and the program performs the call h(x, y),
the monitor will observe the action h(f(), g()). Since the actions of the program
are described by trees, policies can be conveniently modeled as tree automata. This
approach caters for a more natural way of expressing policies that involve data
dependencies and more sophisticated API-protocol constraints.

An example illustrating the difference between linear monitoring and tree based
monitoring follows.

Example 2. Assume that we have a simple SQL-sanitization policy and the follow-
ing security relevant functions readInput, sanitize, concat and execQuery. Given
the following program,

q := “SELECT password FROM Users WHERE user=”
x := readInput()
if flipCoin() then

x := sanitize(x)
q := concat(q, x)
execQuery(x)

a linear monitoring model would yield one of the following two observable traces:

readInput(), concat(“SELECT...”, “John”), execQuery(“SELECT...John”)

readInput(), sanitize(“John”), concat(“SELECT...”, “John”), execQuery(“SELECT...John”)

and a tree based monitoring model would yield one of the following observable traces:

readInput sanitize

literal
concat execQuery
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readInput

literal
concat execQuery

As illustrated by the example above, the tree based monitoring approach puts
the arguments given to the security relevant functions in a better context. As
opposed to the linear trace, it is clear whether or not the argument to execQuery is
properly sanitized in the tree shaped trace. A drawback of the tree based approach
is that it requires a slightly more complex implementation as the monitoring state
is associated with the individual values in the execution which are spread out in
memory. Another issue is due to the fact that the approach requires a mechanism
for tracking origins of data. To prove soundness of the approach is thus as difficult
as showing non-interference for any information-flow framework.

1.3 Research Issues and Motivation

In more complex software systems large parts of the code base come from internal or
external libraries. These libraries are in turn not necessarily written from scratch,
but instead often rely on other libraries. The reason for this type of approach is to
allow each component in the system to focus on the business logic and the problem
it is intended to solve. The effect is that a larger software system spans over several
levels of abstraction and that the distance between the interface which the core
business logic components interacts with and the operating system interface may
be far apart logically and code wise. To express and enforce policies on the operating
system interface level is under such circumstances unnatural and impractical at best.
Firstly not all actions that could potentially be viewed as security relevant generate
a system call to be monitored in which case such policy would not be supported.
Secondly, even if each potentially security relevant action triggers a system call a
policy expressing a business level constraint may require an over-approximation if
expressed in terms of system level primitives. See Figure 1.7a for an illustration.

The problems are similar—if not worse—in extensible systems where external
components are loaded and executed in runtime. An embedded application (such as
a document macro, a stored procedure in a database, some 3rd party plugin or some
content embedded in a webpage) should typically be executed with a stricter secu-
rity policy than the program they are embedded in (a word processor, DBMS or a
web browser). Since a policy enforcement mechanism operating at the system-level
is not able to differentiate between system calls performed by the application itself
and system calls performed by the embedded component, the enforcement mecha-
nism would, in order to be sound, effectively have to restrict the entire application.
Figure 1.7b illustrates this situation.

Apart from enforcing the policy at a better level of abstraction, an inlined ref-
erence monitor can also be implemented in a higher-level language (HLL). For a
document macro, the monitor could be realized by inserting snippets of macro
scripts and for an applet embedded in a web page, it could be realized in terms of
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(a) A reference monitor implemented at
the operating system interface can nei-
ther differentiate between actionsm1 and
m2 nor observe the action m3.
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(b) Constraining actions of embedded
components may require constraining ac-
tions of the host application.

Figure 1.7: Problems with enforcing business level policies on OS interface level.

extra bytecode instructions. The advantages of using an HLL are many:

1. To securely embed a reference monitor into an application it is important
to make sure that all control flow paths are considered. In particular jumps
directly to security relevant instructions must be rerouted to a policy decision
point. The analysis of the control flow of a program written in a structured
language is trivial compared to a program with arbitrary and global jumps.
Even in unstructured HLL such as Java byte code, there is no risk of for
instance unpredicted jumps due to buffer overflow attacks.

2. An inlined reference monitor is more concise and to the point if expressed in
an HLL. The higher level of abstraction caters for a simpler rewriter (i.e. a
smaller TCB) which is easier to reason formally about and to prove correct.

3. Features of higher-level languages such as for instance type safety also provide
strong guarantees that can be used to ensure that a secured application cannot
compromise its IRM.

The reasons stated above motivate the study of inlined reference monitoring in
general. The remainder of this section motivates the study of each specific topic
discussed in the thesis.

Certification A drawback with the classical approach to reference monitor in-
lining where the consumer inlines the policy prior to execution is that the TCB
needs to include a potentially large and complex program rewriter. Since the level
of assurance of a system is inversely proportional to the size and complexity of the
TCB, studying how to reduce or eliminate the inliner from the TCB is of high im-
portance. If the benefits of inlining the reference monitor into the program are to
be kept however, this requires the monitor to be embedded by an inliner that is out-
side the trust boundary. In such case the consumer needs some form of guarantee
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Figure 1.8: Monitor inlining as part of the TCB vs Proof-carrying code with
untrusted monitor inlining.

of the fact that a reference monitor is properly embedded in the program. One way
of solving this is by a technique called proof-carrying code (PCC). The concept of
proof-carrying code was first described by G. Necula and P. Lee. in 1996 [96] and
exploits the fact that, while proving that a program complies with a policy may be
hard, verifying that an existing proof is correct is easy. The motivating example
used in [96] discusses packet filters and demonstrates how the technique can be
used to ensure adherence of a memory safety policy. In our scenario, the purpose of
the proofs is to convey the fact that a given program has a security monitor with
certain properties correctly embedded. The main benefit of the approach is that
the inliner is replaced by a relatively simple proof checker, thus reducing the size
and complexity of the TCB. Figure 1.8 illustrates the difference.

In addition to having a smaller TCB, this approach also enables the inlining to be
performed by the developer instead of the consumer. There are several advantages
with such approach:

• The developer has a better insight in the structure of the code and can thus
guide the monitor inlining process to optimize for speed and/or code size.

• The developer can test and debug the precise code that will be executed by
the consumer.

• A proof checker is not only smaller and less complex to analyze, it typically de-
mands less resources in runtime, than a rewriter. This can be a big advantage
when targeting mobile devices with limited resources.

The main drawback of letting the developer perform the inlining is of course
that the decision of which policy to enforce must be made prior to distributing the
program to the end users.

Concurrency In the early 2000s there was a sharp turn in the trend toward faster
CPU clock speeds [122] and after several decades of steady increase in the speed
at which computers execute sequential programs we now seem to have reached the
limit. In a foreseeable future, applications which are not designed with concurrency
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in mind will thus not run faster than they do today. (In fact they might even run
slower, considering that individual cores run at lower clock speeds to reduce power
consumption [123]). As a result we will see more programs taking advantage of
multicore architectures which motivates the study of the security implications of
executing multithreaded programs in general. As most interesting policies judge
whether to accept or reject a security relevant action based on the history of the
execution the monitor typically maintains a security state. This poses a fundamen-
tal challenge in terms of synchronization as soon as two or more threads perform
security relevant actions. Important questions arise, such as how are the classi-
cal correctness properties affected, what type of policies can be enforced securely
through client-side inlining and how can we leverage the certification mechanisms
to deal with multithreaded applications.

Tree Based Monitoring Earlier work on security enforcement through IRMs has
focused on linear monitoring. This approach is well suited for enforcing most types
of temporal constraints, such as “don’t send after read” or “access a resource only
between calls to acquire and release”. Our experience however, shows that many
useful policies that are common in practice fall outside of this class, most notably
due to the lack of support for expressing data-dependencies. By assuming a more
data-centric view, as opposed to the classical control flow centric view, where each
piece of data is associated with its own security state describing which functions it
originates from, allows us to naturally express policies such as

• Arguments to some query-method must be either constants, outputs of a san-
itize function, or concatenations of any such values

• Only send location data if it has been properly encrypted

• Don’t send SMSes to numbers provided by an external data source

all of which are hard (or even impossible) to express and enforce using linear mon-
itoring techniques.

1.4 This Thesis
Apart from this introduction and the concluding chapter, the thesis consists of four
papers. Each paper has been revised to include more elaborate proofs, provide
clearer explanations and reduce overlapping material.

The first paper (presented in Chapter 2) focuses on how to certify that a pro-
gram is self-monitoring by means of proof-carrying code. The results apply to
single threaded programs. The second paper (presented in Chapter 3) turns to
the issues related to concurrency and describes in detail what can (and cannot) be
achieved with a blocking inlining scheme. The third paper (presented in Chapter 4)
extends the study to non-blocking inliners and discusses how to adapt the certifi-
cation mechanism to multithreaded programs. While the study of the first three
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papers assumes a standard program and policy model, the fourth paper (presented
in Chapter 5) describes a new type of inlining based on a program model with sup-
port for data-tracking and a policy model based on tree-automata. In this setting
there is no global security state and consequently no security relevant data-races to
worry about in a concurrent execution model.

Each paper follows the same structure: First a motivation of the research pre-
sented is provided. The program and policy model are then presented, followed
by the definitions, theorems and proofs of the theoretical results. Each paper then
describes a prototype implementation and a set of case studies intended to evalu-
ate the practicality of the results. Although all prototype implementations targets
Java bytecode, the theoretical results are fundamental and does not rely on any
semantical properties specific to the JVM (except when reasoning formally about
the correctness of the prototype implementation).

1.4.1 Included Papers

A summary of the results and contributions presented in the included papers follow.

Paper I: A Proof-Carrying Code Framework for Inlined Reference
Monitors in Sequential Java Bytecode

The contribution of this paper is a proof-carrying code framework for inlined ref-
erence monitoring. In the scenario envisaged in this paper, the monitor inlining
is performed by the developer, i.e. outside trust boundary of the consumer. A
description of the workflow follows:

1. The program is compiled by the developer.

2. The developer pins down precisely what resources the application needs and
formulates an as restrictive policy as possible. (This policy is referred to as
the contract).

3. The developer inlines a monitor enforcing this contract and generates a proof
of adherence that shows that a monitor is indeed properly embedded.

4. The developer bundles the program, contract and adherence proof in a package
which is shipped to the consumer.

5. The consumer checks that the bundled contract is compatible (i.e. more re-
strictive) than the consumer policy.

6. The consumer verifies that the proof indeed shows that the there is an em-
bedded monitor enforcing the contract.

7. The consumer safely executes the program.



18 CHAPTER 1. INTRODUCTION

The framework is designed on top of a weakest precondition calculus and works
at the granularity of methods. Each method has its own pre- and post-conditions
and a notion of method local validity is defined. The first theorem of the paper
shows that local validity implies (global) validity, i.e. if each method adheres to its
pre- and post-conditions, the program as a whole adheres to the specified contract.
The paper also includes an example inliner and an algorithm to generate adherence
proofs. By providing theorems stating that (a) the existence of a (valid) adherence
proof implies contract adherence and (b) that the proof generation algorithm works
for arbitrary monitors embedded by the proposed inliner, the paper shows that the
inliner presented is secure.

Finally the paper describes a prototype implementation. The implementation
consists of two parts: one part for the developer (an inliner and proof generator) and
one part for the consumer (a Java ME based proof checker). Both parts are fully
automatic and, as shown in the benchmarks, scale well in real world applications.

The original version of this paper was co-authored with M. Dam and is available
online as a technical report [28].

Paper II: Provably Correct Inline Monitoring for Multithreaded
Java-like Programs

As described in Section 1.2.1 there is a fundamental problem associated with clas-
sical client-side inlining in a multithreaded context. To guarantee a secure enforce-
ment of the policy, the order in which the snippets of inlined code is executed must
accurately reflect the order in which the security relevant actions are executed. One
way of doing this is to use a blocking inliner, which is the approach examined in
this paper.

The first contribution of the paper is the definition of strong conservativity which
is a relaxation of ordinary conservativity, intended to capture the correct inlining be-
havior is in a multithreaded setting. The paper continues by describing an example
inlining scheme which is shown to be strongly conservative.

Finally, the paper concludes by presenting the results from four different case
studies. For each case study, a security policy is applied to an off-the-shelf Java ME
application. The effectiveness of the embedded monitor is tested and relevant bench-
marks are recorded. As demonstrated, the prototype scales well and can be applied
to large applications.

The original version of this paper was co-authored with M. Dam, B. Jacobs and
F. Piessens and published in Journal of Computer Security, 2010 [26].

Paper III: Security Monitor Inlining and Certification for
Multithreaded Java

This paper focuses on the same problems as the previous paper, namely the problems
related to client-side inlining in a multithreaded context, but with focus on non-
blocking inlining.
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The first contribution of this paper is a characterization of so called race free
policies. The set of race free policies turns out to be the maximal set of transparently
enforceable policies. This is shown in the paper by proving that (a) any inlining
of a policy outside this class is either not secure or not transparent, and (b) by
exhibiting a concrete inliner for policies inside the class which is secure, conservative
and transparent.

The inliner is implemented for Java and applied to five applications and security
policies (none of which have been used in prior work). As shown, the prototype
scales well even for policies with 200+ clauses and application binaries on over
a megabyte. Finally, the paper revisits the topic of certification and shows how
proof-carrying code could be supported in the context of multithreading.

The original version of this paper was co-authored with M. Dam, B. Jacobs and
F. Piessens and accepted for publication in Mathematical Structures in Computer
Science, 2012 [22]. It is a journal version of Security monitor inlining for multi-
threaded Java published in the proceedings of the 23rd European Conference on
Object-Oriented Programming in 2009, [23].

Paper IV: TreeDroid: A Tree Automaton Based Approach to Enforcing
Data Processing Policies

Traditional runtime monitoring (such as the techniques discussed in Paper I–III)
handles policies that restrict the control flow of a program, or more precisely, the
interleaved sequence of security relevant actions performed by the program. This
paper proposes a technique which extends the expressiveness of the policy language
to also reason about data dependencies. As shown in the paper, this caters for a
much more natural representation of many real world policies.

The first contribution of the paper is a theoretical formalization of the monitor-
ing framework. The formalization consists of a program model based on λ-calculus
which includes external (and observable) function calls and a policy model based
on tree automata. The second contribution is a hierarchical classification of policy
types. The paper identifies three policy classes (prefix-closed, local and subtree-
closed) and describes their properties and relations under call-by-value reduction
and arbitrary reduction strategies. As a third contribution we describe a denota-
tional semantics of a simple imperative language, and show how a naive and straight
forward encoding in our calculus induces the expected monitoring properties. This
forms the bases of the last contribution, which is a full implementation of the frame-
work running on top of the Android platform. The implementation is evaluated in
five different case studies which include applications on over 100,000 lines of code
and real world malware.

The original version of this paper was co-authored with M. Dam and G. Le
Guernic and was published in the proceedings of the 19th ACM conference on
Computer and communications security, CCS, 2012 [27].
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1.4.2 Author Contributions
In this section I, Andreas Lundblad, give account of the contributions I have made
in the papers included in this thesis.

When I started my graduate studies in March 2007 the breeding ground for
the first paper had already been laid out. Together with my adviser Mads Dam,
I developed a transition semantics for a program model and verification condition
generator for the proof system. In the development of the final version of the paper,
I contributed with writing, development of the proofs and carrying out the case
studies. During 2008 through 2011 I collaborated with Mads Dam, Bart Jacobs
and Frank Piessens and together we published the second and third paper in this
thesis. The theoretical formalization, including the proofs, were to a large extent
developed in a close collaboration between Jacobs and myself during one visit by
Jacobs to KTH and two visits by me to K. U. Leuven. Apart from contributing to
the theoretical parts of the papers together with Jacobs, I developed the prototype
implementation and performed the case studies. During 2012 I, together with Mads
Dam and Gurvan Le Guernic published the fourth paper in this thesis. I (with a
background in reference monitoring) and Le Guernic (with a background in infor-
mation flow) hatched the idea together. While Le Guernic contributed with some
initial work on the λ-calculus model I was the driving force behind most parts of
the writing, proof development, prototype implementation and case studies.
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Abstract

We propose a light-weight approach for certification of monitor inlining
for sequential Java bytecode using proof-carrying code. The goal is to en-
able the use of monitoring for quality assurance at development time, while
minimizing the need for post-shipping code rewrites as well as changes to the
end-host TCB. Standard automaton-based security policies express constraints
on allowed API call/return sequences. Proofs are represented as JML-style
program annotations. This is adequate in our case as all proofs generated in
our framework are recognized in time polynomial in the size of the program.
Policy adherence is proved by comparing the transitions of an inlined monitor
with those of a trusted “ghost” monitor represented using JML-style annota-
tions. At time of receiving a program with proof annotations, it is sufficient for
the receiver to plug in its own trusted ghost monitor and check the resulting
verification conditions, to verify that inlining has been performed correctly, of
the correct policy. We have proved correctness of the approach at the Java
bytecode level. An implementation, including an application loader running
on a mobile device, is available, and we conclude by giving benchmarks for two
sample applications.
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2.1 Introduction
Program monitoring [82, 75, 17] is a well-established technique for software quality
assurance, used for a wide range of purposes such as performance monitoring, pro-
tocol compliance checking, access control, and general security policy enforcement.
The conceptual model is simple: Monitorable events by a client program are inter-
cepted and routed to a decision point where the appropriate action can be taken,
depending on policy state such as access control lists, or on application history.
This basic setup can be implemented in a huge variety of ways. In this paper our
focus is monitor inlining [43]. In this approach, monitor functionality is weaved into
client code in AOP style, with three main benefits:

• Extensions to the TCB needed for managing execution of the client, inter-
cepting and routing events, and policy decision and enforcement are to a
large extent eliminated.

• Overhead for marshaling and demarshaling policy information between the
various decision and enforcement points in the system is eliminated.

• Moreover, there is no need to modify and maintain a custom API or Virtual
Machine.

This, however, presupposes that the user can trust that inlining has been performed
correctly. This is not a problem if the inliner is known to be correct, and if inlining
is performed within the users jurisdiction. But it could be of interest to make
inlining available as a quality assurance tool to third parties (such as developers or
operators) as well. In this paper we examine if proof-carrying code can be used to
this effect in the context of Java and mobile applications, to enable richer, history-
dependent access control than what is allowed by the current, static sandboxing
regime.

Our approach is as follows: We assume that J2ME applications are equipped
with contracts that express the provider commitments on allowed sequences of API
calls performed by the application. Contracts are given as security automata in
the style of Schneider [112] in a simple contract specification language ConSpec [2].
The contract is compiled into bytecode and inlined into the application code as in
PoET/PSLang [42], and a proof is generated asserting that the inlined program ad-
heres to the contract, producing in the end a self-certifying code “bundle” consisting
of the application code, the contract, and an embedded proof object.

Upon reception the remote device first determines whether the received bundle
should be accepted for execution, by comparing the received contract with the device
policy. This test uses a simulation or language containment test, and is explored in
detail by K. Naliuka et al. [12]. It then verifies that code adheres to the contract
by checking the correctness of the accompanying proof.

The contribution of this paper is the efficient representation, generation and
checking of proof objects. The key idea is to compare the effects of the inlined,
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untrusted, monitor with a “ghost” monitor which implements the intended contract.
A ghost monitor is a virtual monitor which is never actually executed, and which is
represented using program annotations. Such a ghost monitor is readily available
by simply interpreting the statements of the ConSpec contract as monitor updates
performed before and after security relevant method calls. No JVM compilation is
required at this point, since these updates are present solely for proof verification
purposes.

The states of the two monitors are compared statically through a monitor in-
variant, expressing that the state of the embedded monitor is in synchrony with
that of the ghost monitor. This monitor invariant is then inserted as an assertion
at each security relevant method call. The assertions for the remaining program
points could then in principle be computed using a weakest precondition (WP) cal-
culus. Unfortunately, there is no guarantee that such an approach would be feasible.
However, it turns out that it is sufficient to perform the WP computations for the
inlined code snippets and not for the client code, under some critical assumptions:

• The inlined code appears as contiguous subsequences of the entire instruction
sequences in the inlined methods.

• Control transfers in and out of these contiguous code snippets are allowed
only when the monitor invariant is guaranteed to hold.

• The embedded monitor state is represented in such a way that a simple syn-
tactic check suffices to determine if some non-inlined instruction can have an
effect on its value.

The last constraint can be handled, in particular, by implementing the embedded
monitor state as a static member of a final security state class. The important
consequence is that instructions that do not appear in the inlined snippets, and do
not include putstatic instructions to the security state field, may be annotated
with the monitor invariant to obtain a fully annotated program. This means that a
simple syntactic check is sufficient to eliminate costly WP checks in almost all cases
and allows a very open-ended treatment of the JVM instruction set.

The resulting annotations are locally valid in the sense that method pre- and
post-conditions match, and that each program point annotation follows from suc-
cessor point annotations by elementary reasoning. This allows us to robustly and
efficiently generate and check assertions using a standard verification condition (VC)
approach, as indicated in Figure 2.1.

Our approach is general enough to handle a wide range of inliners. The developer
(who has a better insight in the application in question) is free to tweak the inlining
process for his specific application and could for instance optimize for speed in
certain security relevant call sites, and for code size elsewhere.
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Bytecode Contract

Inliner

Proof Generator

Inlined Classes

Ghost Annotator

Classes + Ghost monitor

Ghost Annotator

VC Checker

Classes + Ghost monitor

VC Generator

Verification Conditions

Adherence Proof Valid/Invalid

Code Producer Code Consumer

Figure 2.1: The architecture of our PCC implementation.

2.1.1 Related Work

Our approach adopts the Security-by-Contract (SxC) paradigm (cf. [12, 94, 33, 75,
17]) which has been explored and developed mainly within the S3MS project [106].

Monitor inlining has been considered by a number of authors, cf. [43, 42, 40, 1,
128]. Erlingsson and Schneider [42] represents security automata directly as Java
code snippets, making the resulting code difficult to reason about. The ConSpec
contract specification language used here is for tractability restricted to API calls
and (normal or exceptional) returns, and uses an independent expression syntax.
This corresponds roughly to the call/return fragment of PSLang which includes all
policies expressible using Java stack inspection [43].

Edit automata [83, 82] are examples of security automata that go beyond pure
monitoring, as truncations of the event stream, to allow also event insertions, for
instance to recover gracefully from policy violations. This approach has been fully
implemented for Java by J. Ligatti et al. in the Polymer tool [7] which is closely
related to Naccio [44] and PoET/PSLang [42].

Certified reference monitors has been explored by a number of authors, mainly
through type systems, e.g. in [117, 6, 133, 65, 29], but more recently also through
model checking and abstract interpretation [119, 118]. Directly related to the work
reported here is the type-based Mobile system due to Hamlen et al. [65]. The
Mobile system uses a simple library extension to Java bytecode to help managing
updates to the security state. The use of linear types allows a type system to
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localize security-relevant actions to objects that have been suitably unpacked, and
the type system can then use this property to check for policy compliance. Mobile
enforces per-object policies, whereas the policies enforced in our work (as in most
work on IRM enforcement) are per session. Since Mobile leaves security state tests
and updates as primitives, it is quite likely that Mobile could be adapted, at least to
some form of per session policies. On the other hand, to handle per-object policies
our approach would need to be extended to track object references. Finally, it is
worth noting that Mobile relies on a specific inlining strategy, whereas our approach,
as mentioned in the previous section, is less sensitive to this.

In [119, 118] Sridhar et al. explores the idea of certifying inlined reference
monitors for ActionScript using model-checking and abstract interpretations. The
approach is not tied to a specific inlining strategy and is general enough to handle
different inlining techniques including non-trivial optimizations of inlined code. Al-
though the certification process is efficient, the analysis, however, has to be carried
out by the consumer.

For background on proof-carrying code we refer to [95]. Our approach is based
on simple Floyd-like program point annotations in the style of Bannwarth and
Müller [4], and method specifications extended by pre- and post-conditions in the
style of JML [78]. Recent work related to proof-carrying code for the JVM in-
clude [5], all of which has been developed in the scope of the Mobius project.

An alternative to inlined reference monitoring and proof-carrying code, is to pro-
duce binaries that are structurally simple enough for the consumer to analyze him-
self. This is currently explored by B. Chen et al. in the Native Client project [139]
which handles untrusted x86 native code. This is done through a customized com-
pile chain that targets a subset of the x86 instruction set, which in effect puts the
application in a sandbox. When applicable it has a few advantages in terms of
runtime overhead, as it eliminates the monitoring altogether, but is constrained in
terms of application and policy complexity.

Overview of the Paper

The JVM machine model is presented in Section 2.2. In Section 2.3 the state
assertion language is introduced, and in Section 2.4 we address method and pro-
gram annotations and give the conditions for (local and global) validity used in
the paper. We briefly describe the ConSpec language and (our version of) security
automata in Section 2.5. The example inlining algorithm is described briefly in Sec-
tion 2.6. Section 2.7 introduces the ghost monitor, and Section 2.8, then, presents
the main results of the paper, namely the algorithms for proof generation and proof
recognition, including soundness proofs. Finally, Section 2.9 reports briefly on our
prototype implementation, and we conclude by discussing some open issues and
directions for future work in Section 2.10.
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Java Bytecode Programs
Prg : (c→ Class, cmain) Programs
c ∈ String Class identifiers
Class ::= (m→ M , f∗) Class definitions
m ∈ String Method identifiers
M ::= (ι+, H∗) Method definitions
ι ∈ Insn Instructions
f ∈ String Field identifiers
H ::= (`b, `e, `t, c) Exception handler
` ∈ N Program labels

JVM Configurations
C ::= (h, S) Configurations
S ∈ R∗ Activation Record Stack
h : r ∪ (c× f)→ Obj Heap
Obj : f → Val Object
r ∈ o ∪ {null} References
o ∈ N Location
Val ::= r | v Values
v ∈ int ∪ float ∪ boolean Primitive values
R ::= (c.m, pc, s, l) | (o) Activation record
pc ∈ N Program counter
s ∈ Val∗ Operand stack
l : N→ Val Local variable store

Table 2.1: JVM Programs and configurations.

2.2 A Single Threaded Program Model 1

The study of the research presented in this chapter is set in the context of single-
threaded Java bytecode. We assume that the reader is somewhat familiar with Java
bytecode and the JVM. In this section we give an overview of our program model
and discuss the semantics of the monitorable API calls.

Table 2.1 provides an overview of the structure of bytecode programs and JVM
configurations as well as the semantics of transition relation, →, for key instruc-
tions. A few simplifications have been made in the presentation. In particular we
disregard static initializers, and to ease notation a little we ignore issues concerning
overloading. We also disregard from reflection and the (now deprecated) jsr/ret
instructions since they render the analysis unfeasible.

1This section has been rewritten to be consistent with (and reused in) Chapter 3 and 4.
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2.2.1 Programs

A program consists of a mapping from (fully qualified) class names, ranged over by
c, to class definitions and specifies which class contains the main method. A class
definition declares a set of fields and maps method identifiers, ranged over by m,
to method definitions. A method definition is a pair of an instruction array and an
exception handler array. An exception handler (b, e, t, c) catches exceptions of type
c (and its subtypes) raised by instructions in the range [b, e) and transfers control
to address t, if the handler is the topmost handler in the exception handler array
that handles the instruction for the given type.

2.2.2 Configurations

A configuration of the JVM is a pair C = (h,R) of a heap, h, and a stack, S, of
activation records. The heap maps locations to objects. A reference is either a
location o, or the value null. Objects are finite maps of non-static fields to values.
Static fields are identified with field references of the form c.f . To handle those,
heaps are extended to assign values to static fields.

For normal execution, the activation record at the top of the execution stack
has the shape (M, pc, s, l), where M is the currently executing method, pc is the
program counter, s ∈ Val∗ is the operand stack and l is the local variable store.
Except for API calls the transition relation→ on JVM configurations is standard. A
configuration (h, (M, pc, s, l) :: S) is calling, if M [pc] is an invoke instruction, and it
is returning normally, ifM [pc] is a return instruction. For exceptional configurations
the top frame has the form (o) where o is the location of an exceptional object,
i.e. an object of type Throwable. We say that C is returning exceptionally if the
current method has no exception handler covering the current program counter and
exception type.

2.2.3 Types

The details of the Java type system are essentially irrelevant for the presentation of
the results in this paper. It suffices to assume that the class declarations induce a
class hierarchy, denoted by <:, and that the typing assertion h ` v : c holds if v is
some location o mapped to an object of type c in the heap h. Typing preserves the
subclass relation, in the sense that if h ` v : c and c <: c′ then h ` v : c′ as well.

2.2.4 API Method Calls

We are interested in security policies as constraints on the usage of external (API)
methods. To this end we assume a fixed API, as a set of classes disjoint from that of
the client program, for which we have access only to the signature, but not the im-
plementation of its methods. We therefore represent API method activation records
specially. When an API method is called in some thread a special API method stack
frame is pushed onto the call stack. The execution can then proceed either by re-
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turning or throwing an exception. When the call returns, an arbitrary return value
of appropriate type is pushed onto the caller’s operand stack; alternatively, when it
throws an exception, an arbitrary, but correctly typed exceptional activation record
is placed on the call stack. The heap may have changed during the call, but by the
fact that we disregard from reflection, objects of the classes from the client program
will remain unchanged. Since this model makes no assumptions about the behavior
of API methods, our results hold for all (correctly typed) API implementations.
This semantics does not, however, make any provisions for call-backs.

To refer to API calls and returns we use labeled transitions. Transition labels,
or actions, α come in four variants to reflect the act of invoking an external method
(referred to as a pre-action), returning from an external method normally or ex-
ceptionally (referred to as a normal or exceptional post-action), or performing an
internal, not directly observable computation step. Actions have one of the following
shapes:

• (c.m, o, v)↑ represents the invocation of API method c.m on object o with
arguments v.

• (c.m, o, v, r)↓ represents the normal return of c.m with return value r.

• (c.m, o, v, t)⇓ represents the exceptional return of c.m with exception object
(of class Throwable) t.

• τ represents an internal computation step.

We write C α−→ C ′ if either α = τ and C → C ′, or α 6= τ and C ′ results from C by
the action α according to the above non-deterministic semantics.

2.2.5 Transition Semantics

We here present a transition semantics of JVM instructions used in proofs. We
assume that the configurations are type safe, in the sense that heap contents match
the types of corresponding references, and that arguments and return / exceptional
values for primitive operations as well as method invocations match their prescribed
types. The Java bytecode verifier serves, among other things, to ensure that type
safety is preserved under machine transitions (cf. [80]). We only present the rules for
the bytecode instructions mentioned in the paper. The rules for the other bytecode
instructions are similar and straightforward.

Notation

Besides self-evident notation for function updates, array lookups etc. the transition
rules uses the following auxiliary operations and predicates:
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• handler(H,h, o, pc) returns the proper target label given an exception handler
array H, heap h, throwable o and program counter pc in the standard way:

handler(ε, h, o, pc) = ⊥

handler((b, e, t, c) ·H ′, h, o, pc) =
{
t if b ≤ pc < e and h ` o : c
handler(H ′, h, o, pc) otherwise

The function is overloaded to also accept a method, M = (I,H) as first
argument, in which case it the function simply uses the exception handler, H
of that method.

• Stack frames have one of three shapes (M, pc, s, l), (o) where o is throwable
in the current heap, and (�) used for API calls (see Section 2.2.4).

Local Variables and Stack Transitions
S → S′

(h, S)→ (h, S′)

M [pc] = aload n
(M, pc, s, l) :: S

→ (M, pc + 1, l(n) :: s, l) :: S

M [pc] = astore n
(M, pc, v :: s, l) :: S

→ (M, pc + 1, s, l[n 7→ v]) :: S

M [pc] = athrow
(M, pc, o :: s, l) :: S

→ (o) :: (M, pc + 1, o :: s, l) :: S

M [pc] = goto L
(M, pc, s, l) :: S

→ (M,L, s, l) :: S

M [pc] = iconst_n
(M, pc, s, l) :: S

→ (M, pc + 1, n :: s, l) :: S

M [pc] = ldc c
(M, pc, s, l) :: S

→ (M, pc + 1, c :: s, l) :: S

M [pc] = ifeq L n = 0
(M, pc, n :: s, l) :: S

→ (M,L, s, l) :: S

M [pc] = ifeq L n 6= 0
(M, pc, n :: s, l) :: S

→ (M, pc + 1, s, l) :: S

M [pc] = instanceof c ¬(s0 <: c)
(M, pc, v :: s, l) :: S

→ (M, pc + 1, f :: s, l) :: S

M [pc] = instanceof c s0 <: c
(M, pc, v :: s, l) :: S

→ (M, pc + 1,t :: s, l) :: S

Heap transitions

M [pc] = putstatic c.f
(h, (M, pc, v :: s, l) :: S)

→ (h[c.f 7→ v], (M, pc + 1, s, l) :: S)

M [pc] = getstatic c.f
(h, (M, pc, s, l) :: S)

→ (h, (M, pc + 1, h(c.f) :: s, l) :: S)
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Exceptional Transitions

pc′ = handler(M,h, o, pc) pc′ 6= ⊥
(h, (o) :: (M, pc, s, l) :: S)

→ (h, (M, pc′, s, l) :: S)

handler(M,h, o, pc) = ⊥
(h, (o) :: (M, pc, s, l) :: S)

→ (h, (o) :: S)

API calls

As discussed in Section 2.2.4 API calls are treated specially. To model the fact API
methods can affect the heap, but only the fields of the classes defined by the API
we define an equivalence relation over heaps, 'API and the API-transition rules as
follows.

Definition 1. Let 'API be an equivalens relation over heaps such that h 'API h
′

holds if and only if h(c.f) = h′(c.f) for each c 6∈ API and for each field f in c.

M [pc] = invokevirtual c.m c.m ∈ API
(h, (M, pc, s, l) :: S)

→ (h, (�) :: (M, pc + 1, s, l) :: S)

h 'API h
′

(h, (�) :: (M, pc, s, l) :: S)
→ (h′, (�) :: (M, pc, s, l) :: S)

−
(h, (�) :: (M, pc, s, l) :: S)

→ (h, (o) :: (M, pc + 1, s, l) :: S)

−
(h, (�) :: (M, pc, s, l) :: S)

→ (h, (M, pc, v :: s, l) :: S)

The rules above only deal with invocation of API methods. Other invocations
(client code calling client code) are standard, and we do not spell out the rule here.

2.3 Assertions
Annotations are given in a language similar to the one described by F. Y. Bannwart
and P. Müller in [4]. The syntax of assertions a and (partial) expressions e are given
in the following BNF grammar:

e ::= v | e.f | c.f | si | li | e ◦ e | e→ e|e | (e, e) | ⊥

a ::= t | f | e r e | a ∧ a | ¬a | e : c

where i ∈ ω. The semantics, as mappings JeKC and JaKC is given in Figure 2.2. The
operations ◦ and r are generic binary operators and relation symbols, respectively,
with Kleene equality. The expression si refers to the i’th element of the operand
stack, and li refers to the i’th local variable; (e1, e2) is pairing and t and f represent
true and false respectively. A heap assertion is an assertion that does not reference
the stack or any of the local variables. Disjunction (∨) and implication (⇒) are
defined as usual. We let if(a0, a1, a2) denote the conditional expression (a0 ⇒
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Je.fK(h, S) = h(JeK(h, S)).f Je : cK(h, S) =
{

t if h ` JeK(h, S) : c
f otherwise

Jc.fK(h, S) = h(c.f) Je1 → e2 | e3KC =
{

Je2KC , if Je1KC = t
Je3KC, otherwise

Je1 ◦ e2KC = Je1KC ◦ Je2KC JsiK(h, (M, pc, s, l) :: S) = si

J(e1, e2)KC = (Je1KC, Je2KC) JliK(h, (M, pc, s, l) :: S) = li

Ja1 ∧ a2KC = Ja1KC ∧ Ja2KC Je1 r e2KC = Je1KC r Je2KC

J¬aKC = JaKC JtKC = t

J⊥KC = ⊥ JfKC = f

Figure 2.2: Semantics of expressions and assertions

a1) ∧ (¬a0 ⇒ a2) and select(A1, A2, aelse) the generalized conditional expression
if(A1,0, A2,0, if(A1,1, A2,1, . . . , if(A1,n, A2,n, aelse) . . .)).

2.4 Extended Method Definitions

In this section we extend the syntactical definition of a method by an array of pro-
gram point assertions and by invariants at method entry and (normal or exceptional)
return.

Definition 2 (Extended Method Definition). An extended method definition is a
tuple (I,H,A, pre, post) in which (I,H) is a method definition, A is an array of
assertions such that |I| = |A| and pre and post are heap assertions. An extended
program is a program with extended methods. We let the array of assertions asso-
ciated with a method M be denoted by AM .

For extended programs, the notions of transition and execution are not affected
by the presence of assertions. An extended program is said to be valid, if all annota-
tions are validated by their corresponding configurations in each execution starting
in a configuration satisfying the initial precondition. The notion of validity is defined
below.

Definition 3 (Configuration Validity). A (normal) configuration C = (h, (c.m, pc,
s, r) :: S) is valid if JAc.mpc KC holds.

For an extended program, validity is defined as follows.
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IL WP(I,H,A,pre,post)(L)
aload n unshift(AL+1[ln/s0])
astore n (shift(AL+1)) ∧ s0 = ln
athrow select((s0 : c ∧ b ≤ L < e)(b,e,L′,c)∈H , (AL′)(b,e,L′,c)∈H , post)
dup unshift(AL+1[s1/s0])
getfield f unshift(AL+1[s0.f/s0])
getstatic c.f unshift(AL+1[c.f/s0])
goto L′ AL′

iconst_n unshift(AL+1[n/s0])
if_icmpeq L′ if(s0 = s1, shift2(AL′), shift2(AL+1))
ifeq L′ if(s0 = 0, shift(AL′), shift(AL+1))
instanceof c AL+1[s0 : c/s0]

invokevirtual c.m
select((s0 : c ∧ b ≤ L < e)(b,e,L′,c)∈H , (AL′)(b,e,L′,c)∈H , post)
∧ (

∧
c′∈defs(c.m) prec′.m)

invokestatic tSystem.exit
ldc v unshift(AL+1[v/s0])
putstatic c.f shift(AL+1)[s0/c.f ]
return post

Figure 2.3: Specification of the WPM function

Definition 4 (Extended Program Validity). An extended program Prg is valid if
for each execution E = C0C1 . . . Ck of Prg, such that JpremainKC0 holds, all normal
configurations in E are valid.

We reduce this form of validity to a more tractable form of local validity. Our no-
tion of local validity is modular in methods and more appropriate for proof-carrying
code. The local validity is defined in terms of verification conditions generated by
a WP-calculus. Basically it requires the precondition to imply the assertion of the
first instruction, and that each assertion must be strong enough to ensure validity
of any successor assertion. (As we shall see however, the process is much simplified
as weakest preconditions need only be computed for the instructions added by the
inliner.)

The WPM function is specified for the instructions that are relevant for the
presentation of this paper in Table 2.3. The definition uses the auxiliary functions
shift and unshift which increments, resp. decrements, each stack index by one and
defs(c.m) which denotes the set of all classes c′ such that c <: c′ and c′ defines m.

The account of dynamic call resolution in Table 2.3 is crude, but the details are
unimportant since, in this paper, pre- and post-conditions are always identical and
common to all methods. For now we state the following lemma regarding variable
and stack transitions.
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Lemma 1 (WP soundness). Let M = (I,H,A, pre, post). If C = (h, (M, pc, s, l) ::
S), C ′ = (h′, (M, pc′, s′, l′) :: S) and C → C ′, then JWPM (pc)KC ⇒ JApc′KC ′

Proof. We split the proof into one case per instruction. Since all cases are simi-
lar and fairly straight forward we give the details only for a the most interesting
instructions.

• aload n: By the definition of → and by the definition of WPM we need to
show:

Junshift(Apc′ [ln/s0])KC ⇒ JApc′K(h′, (M, pc′, l(n) :: s, l) :: S)

This is shown by structural induction on Apc′ . The base cases t and f are
trivial and a1 ∧ a2 follow immediately from the induction hypothesis. The
cases e1 r e2 and e : c require the following auxiliary lemma:

Junshift(e[ln/s0])KC = JeK(h′, (M, pc′, l(n) :: s, l) :: S)

This is in turn shown by structural induction on e. The most interesting case
is when e = si. If i = 0 we have Junshift(s0[ln/s0])KC = Junshift(ln)KC =
JlnKC = l(n) = Js0K((M, pc′, l(n) :: s, l) :: S). If i > 0 we have the following
Junshift(si[ln/s0])KC = Junshift(si)KC = Jsi−1KC = si−1 = JsiK((M, pc, l(n) ::
s, l) :: S). The other base cases (v, li) are trivial and the inductive cases follow
immediately from the induction hypotheses.

• putstatic c.f By the definition of WP and → we need to show that

Jshift(Apc′)[s0/c.f ]KC ⇒ JApc′K(h[c.f 7→ s0], (M, pc′, s′, l′) :: S)

Just as in the previous case we proceed by structural induction on Apc′ . The
base cases hold by inspection and a1∧a2 follow immediately from the induction
hypothesis. For the cases involving an expression, we need to show:

Jshift(e)[s0/c.f ]KC = JeK(h[c.f 7→ s0], (M, pc′, s′, l′) :: S)

For e = si, we have Jshift(si)[s0/c.f ]KC = Jsi+1KC. Since s′ = s1s2 . . . we
know that JsiKC ′ = si+1. For e = c.f , we have Jshift(c.f)[s0/c.f ]KC = Js0KC =
Jc.fK(h[c.f 7→ s0], (M, pc′, s′, l′) :: S). The remaining cases for e are trivial.

• instanceof c For this case we need to show that

JApc′ [s0 : c/s0]KC ⇒ JApc′K(h′, (M, pc′, b :: s, l′) :: S)

where b is t if s0 : c and f otherwise. We proceed by structural induction on
Apc′ . The cases involving an expression rely on, and follow immediately by,
the following

Je[s0 : c/s0]KC = JeK(h′, (M, pc′, b :: s, l′) :: S)

where b is t if s0 : c and f otherwise. Again the result follows from structural
induction on e. The remaining cases for Apc′ are trivial or follow immediately
from the induction hypothesis.
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For a method to be locally valid the assertion of the first instruction must be a
consequence of the methods precondition and each assertion must ensure that, after
executing the corresponding instruction, the resulting configuration should satisfy
the assertion of the successor instructions.

Definition 5 (Local Validity). An extended method M = (I,H,A, pre, post) is
locally valid, if the following verification conditions hold.

1. pre ⇒ A0,

2. AL ⇒WPM (L) for all 0 ≤ L < |I|, and

3. ∨
c′.m∈defs(c.m) postc′.m ⇒ AL for all L succeeding an invoke of c.m.

An extended program is locally valid if all its methods are locally valid and the
precondition of the main method holds in an initial configuration.

We note that local validity implies validity, as expected.

Theorem 1 (Local Validity Implies Validity). For any extended program Prg, if
Prg is locally valid then Prg is valid.

Proof. Given a locally valid program Prg and an arbitrary execution E = C0C1 . . . Ck
of Prg we need to, according to Definition 4, show that all normal configurations
of E are valid according to Definition 3. The proof proceeds by induction over the
length of E. The base case, E = C0 holds since (by the definition of local validity)
premain holds in the initial configuration, and since premain ⇒ Amain

0 . For the in-
ductive step, we assume that all normal configurations in E = C0 . . . Cn−1 are valid
and show that if Cn−1 → Cn and Cn is normal, then Cn is also valid. We assume
that Cn is valid, and split the proof into the following cases:

• If Cn−1 is normal we have the following subcases: (a) If the transition from
Cn−1 to Cn is an invoke instruction, it follows from the definition of WP and
the conditions 1 and 2 of local validity. (b) If it is a return instruction it
follows from the definition of WP and the conditions 2 and 3 of local validity.
(c) For the other instructions it follows directly from Lemma 1.

• If Cn−1 is exceptional, we have the following subcases: (a) If the exception
thrown in Cn−1 is caught locally in the method, Cn is valid by the definition of
WP and by condition 2 of local validity. (b) If Cn−1 is an exceptional return,
we let Cj denote the last normal configuration in C0 . . . Cn−2. We note that
the current instruction of Cn is a successor of the method call performed by
Cj . By the definition of WP (for invokevirtual) and by condition 2 and 3
of local validity, Cn must be valid.
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security state String lastApproved = "";

after file = GUI .fileSendQuery()
perform true → {lastApproved = file; }

exceptional GUI .fileSendQuery()
perform false → {}

before Bluetooth.obexSend(String file)
perform file = lastApproved → {}

Figure 2.4: A security specification example written in ConSpec.

2.5 Security Specifications
We consider security specifications written in a policy specification language Con-
Spec [2], similar to PSlang [42], but more constrained, to be amenable to analysis.
An example specification is given in Figure 2.4. The syntax is intended to be largely
self-explanatory: The specification in Figure 2.4 states that the program can only
send files using the Bluetooth Obex protocol upon direct request by the user. No
exception may arise during evaluation of the user query.

A ConSpec policy specifies in which state and with what arguments an API
method may be invoked. If the policy has one or more constraints on a method,
the method is security relevant. In the example there are two security relevant
methods, GUI .fileSendQuery and Bluetooth.obexSend. The specification expresses
constraints in terms before, after and exceptional clauses. Each clause is a
guarded command where the guards are side-effect free boolean expressions, and
the assignment updates the security state. Guards may involve constants, method
call parameters, object fields, and values returned by accessor or test methods that
are guaranteed to be side-effect free and terminating. Guards are evaluated top to
bottom in order to obtain a deterministic semantics. If no clause guard holds, the
policy is violated. In return clauses the guards must be exhaustive.

2.5.1 Security Automata
A ConSpec contract determines a security automaton (Q,Σ, δ, q0) where Q is a
countable (not necessarily finite) set of states, Σ is the alphabet of security relevant
actions, q0 ∈ Q is the initial state, and δ : Q×Σ→ Q is the transition function. We
assume a special error state ⊥ ∈ Q and view all states in Q except ⊥ as accepting.
We require that security automata are strict in the sense that δ(⊥, α) = ⊥.

Executions produce security relevant actions in the expected manner. A call-
ing configuration generates a pre-action determined by the called method and the
current arguments (top n operand stack values for an n-ary method). A returning
configuration then gives rise to a normal post-action determined by the identifier of
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the returning method and the return value (top operand stack value). For sake of
simplicity we assume that all API methods return a value. An exceptionally return-
ing configuration generates an exceptional post-action determined by the method
identifier of the returning method. The security relevant actions (the security rele-
vant trace) of an execution E is denoted by SRT (E) and formally defined below.

Definition 6 (Security Relevant Trace). The security relevant trace, SRT (E), of
an execution E is defined as

SRT (E) = SRT (E, ε)
SRT (ε, ε) = ε

SRT (CE, γ) =



(c′.m′,v)↑SRT (E,v :: γ)
if C = (h, (c.m, pc,v :: s, l) :: S) is calling c′.m′

(c.m,v, r)↓SRT (E, γ′)
if C = (h, (c.m, pc, r :: s, l) :: S) is returning and γ = v :: γ′

(c.m,v)⇓SRT (E, γ′)
if C = (h, (o) :: S) is returning exceptionally and γ = v :: γ′

SRT (E, γ) otherwise

We generally identify a ConSpec contract with its set of security relevant traces,
i.e. the language recognized by its corresponding security automaton. A program
is said to adhere to a contract if all its security relevant traces are accepted by the
contract.

Definition 7 (Contract Adherence). The program Prg adheres to contract C if for
all executions E of Prg, SRT (E) ∈ C.

For simplicity we assume (without loss of generality) that ConSpec policies
initialize the security state variables to the default Java values.

2.6 Example Inlining Algorithm
In this section we give an algorithm for monitor inlining (from now on referred to
as an inlining algorithm, or simply an inliner) in the style of Erlingsson [43]. As
previously mentioned, the developer is free to decide what inlining strategy to use,
so the algorithm presented here serves merely as an example and does for instance
not include any optimizations.

The inliner traverses the instructions and replaces each invoke instruction with
a block of monitoring code. This block of code first stores the method arguments
in local variables for use in post-actions. Then the class hierarchy is traversed
bottom up for virtual call resolution, and when a match is found the relevant clauses,
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guards, and updates are enacted. For post-actions the main difference is in exception
handling; exceptions are rerouted for clause evaluation, and then rethrown.

Our inliner lets the state of the embedded security monitor be represented by
a static field ms of a final security state class, named to avoid clashes with classes
in the target program. This choice of representation relies on the following fact
of JVM execution and allows for our open-ended treatment of large parts of the
instruction set.

Lemma 2. Suppose f is a static field of class c. If C = (h, (M, pc, s, r) :: S)→ C ′

and M [pc] 6= putstatic c.f , then Jc.fKC = Jc.fKC ′.

Proof. By inspection of the semantics (as defined in the JVM specification [86]) of
each instruction in the JVM instruction set.

In other words, the only instruction which can affect the value stored in a static
field f of a class c is an explicit assignment to c.f . In particular, the assumption
ensures that instructions originating from the target program are unable to affect
the embedded monitor state.

Each invokevirtual c.m instruction is replaced by a block of inlined code that
evaluates which concrete method is being invoked, then checks and updates the
security state accordingly. We assume for simplicity that no instructions in a block
of inlined code other than athrow will raise exceptions. The code is easily adapted
at the cost of some additional complexity to take runtime exceptions, such as JVM
errors, violating this assumption into account.

Figure 2.5 shows a schematic policy for a method m : int → int defined in class
c and overridden in a subclass d. The policy has event clauses for before, after
and exceptional cases for each definition of m, each with two guards and two
statement lists.

security state int ms = 0;

before c.m(int a) perform cbg1→ {cbs1 } | cbg2→ {cbs2}
after r = c.m(int a) perform cag1→ {cas1} | cag2→ {cas2}
exceptional c.m(int a) perform ceg1→ {ces1 } | ceg2→ {ces2 }

before d.m(int a) perform dbg1→ {dbs1} | dbg2→ {dbs2 }
after r = d.m(int a) perform dag1→ {das1} | dag2→ {das2 }
exceptional d.m(int a) perform deg1→ {des1} | deg2→ {des2 }

Figure 2.5: Schematic ConSpec policy

Figure 2.6 gives the inlining details for the policy schema in Figure 2.5. In
the figure, each [EVALUATE g] section transforms a configuration (h, (M,pc, s, r) ::
S) to (h, (M,pc′, v :: s, r) :: S) where v is 0 or 1 if the guard g is false or true
respectively. An [EXECUTE stmts] transforms the configuration (h, (M,pc, s, r) ::
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S) to (h[JstmtsK(ms)/ms], (M, pc′, s, r) :: S). (The remaining invoke instructions
(invokestatic, invokeinterface and invokespecial) are handled similarly.)

We refer to the method resulting from inlining a methodM (program Prg) with
a contract C as I(M, C) (I(Prg, C)). The main correctness property we are after for
inlined code is contract compliance:

Theorem 2 (Inliner Correctness). The inlined program I(Prg, C) adheres to C.

Proof. This follows from the fact that we are always able to generate a valid ad-
herence proof (Theorem 4) and that the existence of such adherence proof ensures
contact adherence (Theorem 3). (Both statements are proved in later sections.)

2.7 The Ghost Monitor
Using auxiliary ghost constructs that do not affect the execution and whose sole
purpose is to simplify the verification process is a well-known and common tech-
nique [79]. In this section we describe what we refer to as the ghost monitor.

The purpose of the ghost monitor is to keep track of what the embedded monitor
state should be at key points in the execution. This provides a useful reference for
verification. Moreover, since the ghost monitor writes only to special ghost variables
that are invisible to the client program, and since it is incapable of blocking, it does
not in fact have any observable effect on the client program.

The ghost monitor uses special assignments which we refer to as ghost updates:
Guarded multi-assignment commands used for updating the state of the ghost mon-
itor and for storing method call arguments and dynamic class identities in tem-
porary variables. A ghost update has the shape 〈xg := e〉 where xg is a tuple
of ghost variables, special variables used only by the ghost monitor, and e is an
expression of matching type. Typically, e is a conditional of similar shape as the
policy expressions, and e may mention security state ghost variables as well as other
ghost variables holding security relevant call parameters. Given the post-condition
AL+1, the weakest precondition for the ghost instruction 〈xg := e〉 at label L is
WPM (L) = AL+1[e1/xg1 , . . . , en/xgn].

The ghost updates are embedded right before and after each security rele-
vant invoke instruction as well as in an exception handler catching any exception
(Throwable) thrown by the invoke instruction and nothing else. Note that the ex-
istence of such an exception handler is easily checked, and that the code delivered
by our inliner always has exception handlers of this form. The details are presented
in Figure 2.7. A method M with ghost updates embedded, corresponding to the
security automaton of a contract C is denoted by Ig(M, C).

We let Ig(M, C) denote the method in which a ghost monitor corresponding to
contract C has been embedded into M . The key property of the ghost monitor is
that the trace of ghost monitor states in an execution E, is the same as the states
visited by the security automaton, given SRT (E) as input. This is easily be shown
by an induction over the length of E.
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Label Instruction Label Instruction
tArgs: astore ra deFail: iconst_1

astore rt inv_static Sys.exit
aload rt ceChk: aload rt

aload ra instanceof c
dbChk: aload rt ifeq EEnd

instanceof d ceGrd1: [EVALUATE ceg1]
ifeq cbChk ifeq ceGrd2

dbGrd1: [EVALUATE dbg1] [EXECUTE ces1]
ifeq dbGrd2 goto EEnd
[EXECUTE dbs1] ceGrd2: [EVALUATE ceg2]
goto BEnd ifeq ceFail

dbGrd2: [EVALUATE dbg2] [EXECUTE ces2]
ifeq dBFail goto EEnd
[EXECUTE dbs2] ceFail: iconst_1
goto BEnd inv_static Sys.exit

dBFail: iconst_1 EEnd: athrow
inv_static Sys.exit hdlEnd: aload rt

cbChk: aload rt instanceof d
instanceof c ifeq caChk
ifeq BEnd daGrd1: [EVALUATE dag1]

cbGrd1: [EVALUATE cbg1] ifeq daGrd2
ifeq cbGrd2 [EXECUTE das1]
[EXECUTE cbs1] goto AEnd
goto BEnd daGrd2: [EVALUATE dag2]

cbGrd2: [EVALUATE cbg2] ifeq daFail
ifeq cbFail [EXECUTE das2]
[EXECUTE cbs2] goto AEnd
goto BEnd daFail: iconst_1

cbFail: iconst_1 inv_static Sys.exit
inv_static Sys.exit caChk: aload rt

BEnd: invokevirtual c.m instanceof c
goto hdlEnd ifeq AEnd

hdlStrt: aload rt caGrd1: [EVALUATE cag1]
instanceof d ifeq caGrd2
ifeq ceChk [EXECUTE cas1]

deGrd1: [EVALUATE deg1] goto AEnd
ifeq deGrd2 caGrd2: [EVALUATE cag2]
[EXECUTE des1] ifeq caFail
goto EEnd [EXECUTE cas2]

deGrd2: [EVALUATE deg2] goto AEnd
ifeq deFail caFail: iconst_1
[EXECUTE des2] inv_static Sys.exit
goto EEnd AEnd:

Figure 2.6: Schematic inlining of policy in Figure 2.5
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L: 〈(tg, argsg1, . . . , argsgn) := (sn, . . . , s0)〉
〈msg := tg : ck → δ(msg, (ck.m, argsg)↑)...

| tg : c1 → δ(msg, (c1.m, argsg)↑)
| msg〉

invokevirtual c.m

〈msg := tg : ck → δ(msg, (ck.m, argsg, s0)↓)...
| tg : c1 → δ(msg, (c1.m, argsg, s0)↓)
| msg〉

...
LHStart : 〈msg := tg : ck → δ(msg, (ck.m, argsg)⇓)...

| tg : c1 → δ(msg, (c1.m, argsg)⇓)
| msg〉

Figure 2.7: Ghost updates induced by security automaton (Q,Σ, δ, q0) for an in-
vocation of c.m, where tg is the target object, argsg represents the arguments and
c1 <: . . . <: ck denote all API-classes defining or overriding m.

Lemma 3. Let E = C0 . . . Ck be an execution of Ig(Prg, C) and msgi denote the
ghost monitor state in configuration Ci. If for all 0 ≤ i ≤ k, msgi 6= ⊥, then
SRT (E) ∈ C.

Proof. The result follows from the fact that the ghost monitor state accurately
reflects the security relevant trace of the execution and that all states of the security
automaton, (except ⊥) are accepting.

2.8 Contract Adherence Proofs
The key idea of a contract adherence proof is to show that the embedded monitor
state ms of the program Ig(Prg, C) and the ghost monitor state msg are in agreement
at certain program points. These points certainly need to include all potentially
security relevant call and return sites. But, since we aim for a procedural analysis,
and to cater for virtual call resolution actually all call and return sites are included.

In fact, this is all that is needed, and hence:

Definition 8 (Adherence Proof). An adherence proof for program Prg and contract
C assigns to each method M = (I,H) in Ig(Prg, C) an assertion array A such that
the extended method (I,H,A,ms = msg,ms = msg) is locally valid.

Such an account has two main benefits which are heavily exploited below:
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• It leaves the choice of a particular proof generation strategy open.

• It opens for a lightweight approach to on-device proof checking, by performing
the local validity check on a program with a locally produced ghost monitor.

Theorem 3 (Adherence Proof Soundness). If an adherence proof exists for a pro-
gram Prg and contract C, then Prg adheres to C.

Proof. Assume Π is an adherence proof for a program Prg and a contract C. By
Theorem 1 we know that the corresponding extended program for Ig(Prg, C) is
globally valid. This implies that ms = msg at each configuration that is calling (or
returning from) a security relevant configuration. Furthermore, since the ⊥ value
is an artificial “error” value of the security automaton with no Java counterpart,
we know that if ms = msg, then msg 6= ⊥. Thus, by Lemma 3, SRT (E) ∈ C and
therefore Prg adheres to C.

2.8.1 Example Proof Generation
The process of generating contract adherence proofs is closely related to the process
of embedding the reference monitor, thus the inlining and proof generation is prefer-
ably done by the same agent. This section describes how proofs may be generated
for code produced by the example inliner presented in Section 2.6.

The monitor invariant, ms = msg is set as each methods pre- and post-condition.
The assertion for each specific instruction is generated differently, according to
whether the instruction appears as part of an inlined block or not. Instructions
inside the inlined block affect the processing of the embedded state, method call
arguments etc. For this reason these instructions need detailed analysis using the
WP function. Instructions outside the inlined blocks on the other hand, allow a
more robust treatment, as they are only required to preserve the monitor invariant
which they do due to Lemma 2. The critical property of the annotation function is
the following:

Lemma 4. Given a method M = (I,H) of Ig(Prg, C) and a set IL labeling the
inlined instructions in I, an array A of assertions can be computed such that the
extended method (I,H,A,ms = msg,ms = msg) is locally valid.

Proof. Figure 2.9 shows the construction for a call of a method m : int → int
in class c, under the schematic contract shown in Figure 2.8. We assume that
an exception thrown by the invoked method is matched by an exception handler
table entry on the form (30, 32, 34, any). For brevity we let σbef , σaft and σexc
denote the appropriate substitution for the effect of updating ms according to the
before, after and exceptional clause of c.m respectively. For instance, if bef s denotes
ms = ms × x; ms = ms − 5, then σbef is [(ms · x)− 5/ms].

The array is constructed by annotating the return instructions with the post-
condition, and then in a breadth first manner, annotate the preceding instructions
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security state int ms = 0

before c.m(int a) perform bef g → {bef s}
after r = c.m(int a) perform aftg → {afts}
exceptional c.m(int a) perform excg → {excs}

Figure 2.8: Schema contract for the proof of Lemma 4.

using the WP function in case of inlined instructions and by using the monitor
invariant in other cases.

Theorem 4 (Proof Generation). For each program Prg and contract C there is an
algorithm, polynomial in |Prg|+|C|, which produces an adherence proof of I(Prg, C).

Proof. The algorithm described above treats each method in isolation. The breadth
first traversal of the instructions takes time linearly proportional to the size of the
instruction array plus the number of ghost updates. The resulting adherence proof
is correct by construction.

As an example Figure 2.11 illustrates a generated proof for a part of a program
which has been inlined to comply with the policy in Figure 2.10.

2.8.2 Proof Recognition

Checking the validity of contract adherence proofs involves verifying local validity,
which in general is undecidable. However, the problem is much simplified in our
setup, since proofs apply to programs that have already been inlined with code cor-
responding from ConSpec clauses. Since the ConSpec syntax rules out for instance
loops, the verification conditions that need to be discharged are predictable in the
sense that they follow a certain pattern.

Theorem 5 (Efficient Recognition). The class of polynomial-time recognizable ad-
herence proofs includes all adherence proofs generated from inlined programs using
the algorithm of Theorem 4.

Proof. To verify the validity of a given adherence proof we look at the requirements
of Definition 8. Verifying that the pre- and post-conditions equal the monitor in-
variant is a simple syntactic check and can be done in time linearly proportional to
the number of methods in the program.

For the requirement of local validity, it is sufficient to check that the verification
conditions from Definition 5 can be rewritten to t in time polynomial in the size of
the instruction array. The interesting verification conditions are those of the form
AL ⇒WPM (L) where L is the label of the first instruction in an inlined block. AL
is, in this case, of the form ms = msg ∧ ag0 = a0 = s0 ∧ . . . ∧ agm = am = sm and
WPM (L) is of the form
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Lbl Instruction Lbl Instruction
ms = msg // Exceptional
(non-inlined instruction)

34: ms = msg ∧ a = ag ∧ t = tg

// Inlined code start 〈msg := tg : c → δ(msg, (c.m, ag)⇓)|msg〉

ms = msg 38: if(t : c, A40, A42)
astore a aload t
astore t instanceof c
aload t ifeq 42
aload a

40: if(excg,msσexc(a) = msg, A41)
// Before [Evaluate excg]

26: if(t : c, A28, A30) ifeq 41
aload t [Perform excs]
instanceof c goto 42
ifeq 30

41: t
28: if(befg, if(s1 : c, if(befg, iconst_1

msσbef (a) = msgσbef (s0),msσbef = ⊥), invokestatic System.exit
ms = msg) ∧ a = s0 ∧ t = s1,t)
[Evaluate bef g] 42: ms = msg

ifeq 29 athrow
[Perform bef s]
goto 30 // After

29: t 43: if(t : c, A44, A46)
iconst_1 aload t
invokestatic System.exit instanceof c

ifeq 46
30: if(s1 : c, if(befg,ms = msgσbef (s0),ms = ⊥),

ms = msg) ∧ a = s0 ∧ t = s1 44: if(aftg,msσaft(r, a) = msg,t)
〈(tg, ag) := (s1, s0)〉 [Evaluate aftg]
〈msg := tg : c → δ(msg, (c.m, ag)↑) | msg〉 ifeq 45

[Perform afts]
ms = msg ∧ a = ag ∧ t = tg goto 46
invokevirtual c.m(int) : int

45: t
32: ms = msg ∧ a = ag ∧ t = tg iconst_1

〈rg := s0〉 invokestatic System.exit
〈msg := tg : c → δ(msg, (c.m, ag, rg)↓) | msg〉

// Inlining code end
A43[r/s0]
astore r 46: ms = msg

aload r (non-inlined instruction)

A43
goto 43

Figure 2.9: Schematic annotation for contract displayed Figure 2.8
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security state boolean haveRead = false;

before javax.microedition.rms.RecordStore.openRecordStore(
String name, boolean createIfNecessary)

perform true → {haveRead = true; }

before javax.microedition.io.Connector .openDataOutputStream(String url)
perform haveRead == false → {}

Figure 2.10: A ConSpec specification which disallows the program from sending
data over the network after accessing phone memory.

...
40:{Ψ}

aload_1

inlined



41:{if(0 6= SS.haveRead, t, if(haveReadg = f,Ψ,⊥ = SS.haveRead))}
astore_3

42:{if(0 6= SS.haveRead, t, if(haveReadg = f,Ψ,⊥ = SS.haveRead))}
getstatic SS.haveRead

45:{if(0 6= s0, t, if(haveReadg = f,Ψ,⊥ = SS.haveRead))}
iconst_0

46:{if(s0 6= s1, t, if(haveReadg = f,Ψ,⊥ = SS.haveRead))}
if_icmpne 52

49:{if(haveReadg = f,Ψ,⊥ = SS.haveRead)}
goto 56

52:{t}
iconst_m1

55:{t}
invokestatic System.exit

56:{if(haveReadg = f,Ψ,⊥ = SS.haveRead)}
aload_3
{if(haveReadg = f,Ψ,⊥ = SS.haveRead)}
〈haveReadg := haveReadg = f→ haveReadg〉

71:{Ψ}
invokestatic Connector.openDataOutputStream

74:{Ψ}
astore_2
...

Figure 2.11: Generated assertions for inlining of Connector.openDataOutput-
Stream where Ψ denotes the monitor invariant.



2.9. IMPLEMENTATION AND EVALUATION 45

select((t : cn ∧ tg : cn, . . . , t : c1 ∧ tg : c1),
(select((cn.mG1 ∧ cn.m

g
G1
, . . . , cn.mGi ∧ cn.m

g
Gi

),
(cn.mf1(ms,a) = cn.mg

f1
(msg,ag), . . . ,

cn.mfi
(ms,a) = cn.mg

fi
(msg,ag)),t),

...
...

select((c1.mG1 ∧ c1.mg
G1
, . . . , c1.mGj ∧ c1.mg

Gj
),

c1.mf1(ms,a) = c1.mg
f1

(msg,ag), . . . ,
c1.mfj

(ms,a) = c1.mg
fj

(msg,ag)),t)),
ms = msg)

The verification condition can then be rewritten and simplified by iterated ap-
plications of the rule x = y ⇒ φ −→ φ[z/x][z/y] where x and y are instantiated
with real variables and ghost counterparts respectively and where z is free for x and
y in φ. These rewrites can be performed in time proportional to the length of the
formula and does not increase the size of the expression since x, y and z are atomic.
The result can then be rewritten to t using the rules (ψ ⇒ φ) ∧ (¬ψ ⇒ φ) −→ φ
and φ = φ −→ t in time polynomial in the size of the formula.

All other verification conditions (preM ⇒ A0 and AL ⇒WPM (L) for all labels
L except those of the first instructions in an inlined block) are trivial as their
antecedents and succeedents are identical.

2.9 Implementation and Evaluation
A full implementation of the framework, including a Java SE proof generator, a Java
ME client, instructions and examples is available at www.csc.kth.se/~landreas/
irm_pcc. Both the on- and the off-device software utilize a parser generated by CUP
/ JFlex [68, 76] and the ASM bytecode engineering library [99]. The implementation
has been evaluated in two non-trivial case studies described below.

2.9.1 MobileJam

MobileJam was developed in the context of the S3MS project to serve as a gen-
eral case study. It is a GPS-based traffic jam reporter which utilizes the Yahoo
Maps API. The policy in this case study restricts the connectivity by disallowing
connections to any domains other than local.yahooapis.com.

2.9.2 Snake

The Snake-application used in this case study is a slightly modified version of a
simple, off-the-shelf, game of snake. In addition to maintaining a local highscore
list on file, it allows the user to submit his or her scores to an online highscore
list. The policy used in the case study prevents data-leakage by preventing any
network-writes after reading from local files.



46
CHAPTER 2. A PROOF-CARRYING CODE FRAMEWORK FOR INLINED

REFERENCE MONITORS IN SEQUENTIAL JAVA BYTECODE

MobileJam Snake
Security Relevant Invokes 4 2
Original Size 428.0 kb 43.7 kb
Size increase for IRM 4.8 kb 1.1 kb
Size increase for Proofs 20.6 kb 2.6 kb
Inlining 10.1 s 8.6 s
Proof Generation 4.7 s 0.8 s
Proof Recognition 98 ms 117 ms

Table 2.2: Benchmarks for the two case studies.

The application is intentionally designed to allow the user to break the policy
at runtime (by first reading the local highscore list, and then sending a score over
the network), so that the effectiveness of the inlined monitor can be demonstrated.

2.9.3 Statistics
Table 2.2 summarizes overhead for inlining, proof generation and load-time proof
recognition. Inlining and proof generation was performed on an Intel Core 2 CPU
at 1.83 GHz with 2 Gb memory and proof recognition was performed on a Sony-
Ericsson W810i. The implementation is to be considered a prototype, and very few
optimizations in terms of e.g. proof size have been implemented.

2.10 Conclusions
We have demonstrated the feasibility of a proof-carrying approach to certified mon-
itor inlining at the level of practical Java bytecode, including exceptions and inher-
itance. This answers partially a question raised by K. W. Hamlen et al. [65].

We have proved correctness of our approach in the sense of soundness: Contract
adherence proofs are sufficient to ensure compliance. We also obtain partial com-
pleteness results, namely that proofs for inlined programs can always be generated,
and such proofs are guaranteed to be recognized at program loading time. Other
properties are also interesting such as transparency [109], roughly, that all adher-
ent behavior is preserved by the inliner. This type of property is, however, more
relevant for the specific inliner, and not so much for the certification mechanism,
and consequently not addressed here (but see e.g. [82, 128, 26, 23] for results in this
direction).

The approach is efficient: Proofs are small and recognized easily, by a simple
proof checker. An interesting feature of our approach is that detailed modeling of
bytecode instructions is needed only for instructions appearing in the inlined code
snippets. For other instructions a simple conditional invariance property on static
fields suffices. This means, in particular, that our approach is easy to adapt to
future versions of the Java virtual machine, needing only a check that the static
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field invariance is maintained. Worth pointing out also is that the enforcement
architecture can be realized in a way which is backwards compatible, in the sense
that PCC-aware client programs can be executed without modification in a PCC-
unaware host environment.

The approach to proof recognition described in this paper relies on an automatic
term rewriting algorithm. As shown in Theorem 5 this is indeed sufficient for our
inlining algorithm and our proof generation strategy. If the framework were to be
extended to support for instance more sophisticated policies or inlining algorithms
with optimized output, the verification conditions would no longer be as predictable
and easy to discharge. In such case a proper proof system would have to be defined,
and a corresponding proof checker implemented in the consumer TCB.

It is possible to extend our framework to multi-threading by protecting security
relevant updates with locks, either locking the entire inlined block or releasing the
lock during the security relevant call itself for increased parallelism. For proof
generation the main upshot is that assertions must be stable under interference
by other threads. This requires the ability to protect fields, such as those in the
security state class, with locks by only allowing updates of these fields when the
lock has been acquired. The validity of an assertion may then only depend on fields
protected by locks that has been acquired at that point in the code.
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Abstract

Inline reference monitoring is a powerful technique to enforce security poli-
cies on untrusted programs. The security-by-contract paradigm proposed by
the EU FP6 S3MS project uses policies, monitoring, and monitor inlining to
secure third-party applications running on mobile devices. The focus of this
paper is on multi-threaded Java bytecode. An important consideration is that
inlining should interfere with the client program only when mandated by the
security policy. In a multi-threaded setting, however, this requirement turns
out to be problematic. Generally, inliners use locks to control access to shared
resources such as an embedded monitor state. This will interfere with appli-
cation program non-determinism due to Java’s relaxed memory consistency
model, and rule out the transparency property, that all policy-adherent be-
havior of an application program is preserved under inlining. In its place we
propose a notion of strong conservativity, to formalize the property that the
inliner can terminate the client program only when the policy is about to be
violated. An example inlining algorithm is given and proved to be strongly con-
servative. Finally, benchmarks are given for four example applications studied
in the S3MS project.

3.1 Introduction
Program monitoring is a well-established and efficient approach to prevent poten-
tially misbehaving software clients from causing harm, for instance by violating
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system integrity properties, or by accessing data to which the client is not entitled.
Potentially dangerous actions by a client program are intercepted and routed to a
policy decision point (PDP) in order to determine whether the actions should be
allowed to proceed or not. In turn, these decisions are routed to a policy enforce-
ment point (PEP), responsible for ensuring that only policy-compliant actions are
executed.

The Security of Software and Services for Mobile Systems (S3MS) project has
investigated the use of such program monitors for ensuring the security of commu-
nicating mobile applications. This paper focuses on one of the key scientific results
of the S3MS project: the design and implementation of inlined reference monitors
in multithreaded Java.

The idea of monitor inlining is to push policy decision and enforcement func-
tionality into the client programs themselves, by embedding a security state into the
client program, and using code rewriting to ensure this embedded state is correctly
queried and updated at the appropriate points. When applicable, such an approach
has a number of advantages:

• Overhead for marshalling and demarshalling policy information between the
various decision and enforcement points in the system is eliminated.

• All information needed for policy enforcement is directly available to the PDP
and the PEP.

• Extensions to the trusted computing base (TCB) needed for policy enforce-
ment are localized to the client code.

• By proving the inliner correct, in the sense that it enforces the policy correctly,
and that it interferes with program execution only when necessary, the need
for extensions (trust) can to a large extent be eliminated.

The starting point for much previous work on monitor inlining has been security au-
tomata in the style of Schneider [112]. The PoET/PSLang toolset by Erlingsson [40]
implements monitor inlining for Java. That work represents security automata di-
rectly in terms of Java code snippets, making it difficult to formally prove correct-
ness properties of the approach. As an alternative we propose to use a dedicated
policy specification language ConSpec [2], similar to PSLang, but more constrained
in order to allow for a decidable containment problem. The ConSpec language, in
particular, is designed to monitor only accesses to some specific API, determined
by the application program under consideration.

Formal correctness of inlining for the case of sequential bytecode has been exam-
ined in [1] for Java, and in [129] for .NET. In particular, [1] shows how to generate
bytecode level specification annotations under rather modest assumptions on the
inliner, by fixing control points immediately before and after each method call at
which the embedded state must be correctly updated.
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Other recent work on monitoring and monitor inlining includes work on edit
automata [7, 83, 82], security automata that go beyond pure monitoring, as trun-
cations of the event stream, to allow also event insertions, for instance to recover
gracefully from policy violations. Type-based approaches for security policy en-
forcement have been considered by a number of authors, e.g. [117, 133, 29, 48].
Directly related to the work reported here is the type-based Mobile system due
to Hamlen et al [65]. The Mobile system uses a simple library extension to Java
bytecode to help managing updates to the security state. The use of linear types
allows a type system to localize security-relevant actions to objects that have been
suitably unpacked, and the type system can then use this property to check for
policy compliance.

Our contribution is to propose correctness criteria for monitor inlining in the
case of multi-threaded bytecode programs, and to formally prove correctness for an
example inliner. In particular we address the implications of relaxed memory con-
sistency models in intermediate bytecode languages such as JVML and MSIL. This
turns out to be non-trivial, since locks introduced by the inliner to control access to
shared resources such as the embedded security state will in general interfere with
application program nondeterminism, and rule out the transparency property [82],
that all policy-adherent behavior of an application program is preserved under in-
lining. In its place we propose a notion of strong conservativity, to formalize the
property that any complete trace of an inlined program is either a policy-compliant
complete trace of the uninlined program, or a partial trace of the uninlined program
truncated at the point of the policy violation.

The paper is structured as follows. In Section 3.2 we survey the S3MS project
context, and briefly introduce the ConSpec language. In Section 3.3 we present those
parts of a model for multi-threaded Java bytecode execution needed to understand
the rest of the paper, in particular the concepts of legal execution and observable
trace. Section 3.4 briefly introduces security automata, to pin down the key concept
of policy compliance. Section 3.5 present the main results of the paper: Correctness
criteria, example inliner, and the correctness proof. Section 3.6 gives benchmark
results for four sample mobile applications, and Section 3.7 concludes.

3.2 Security by Contract

The key objective of the S3MS project [105] is the creation of a framework and tech-
nological solutions for trusted deployment and execution of communicating mobile
applications in heterogeneous environments. A contract-based security mechanism
lies at the core of the framework [36, 32].

Application contracts specify the security behavior of mobile applications, and
can be matched with device policies specifying acceptable behavior of applications
on the device.

This section provides a brief summary of the security-by-contract (SxC) paradigm
developed in the S3MS project. We start by analyzing the requirements for a se-
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curity architecture for mobile applications and services, and go on to discuss how
the SxC paradigm fulfills these requirements. Then we discuss how monitor inlining
fits in this picture, and show that the contribution of this paper—provably correct
monitor inlining for multithreaded Java—is an essential ingredient of SxC.

3.2.1 Security for mobile applications and services

Mobile phones and personal digital assistants have evolved over the past years to be-
come general purpose computation platforms. Many of these devices support down-
loading third party applications built on for instance the .NET Compact Framework
or Java Micro Edition. However, supporting applications from potentially untrust-
worthy sources comes with a serious risk: malicious or buggy applications on a phone
can lead to denial of service, loss of money, leaking of confidential information on
the device and so forth.

Current devices already provide certain countermeasures against these threats,
with support for sandboxing and code signing. The key idea is that unsigned code
is severely limited in what it can do on the device, i.e. it runs in a strict sandbox.
Code that is signed by a trusted party can break out of the sandbox. The device
has a keystore that contains the public keys of trusted parties.

This security model has a number of drawbacks. First, it is not flexible: ap-
plications either run in a restricted sandbox, or have full power. Many interesting
types of applications cannot run in a sandbox. Examples of case studies considered
in the S3MS project include:

• Multiplayer games, where communication between the players and/or a game
server is essential.

• A traffic jam reporter, that interacts with the GPS device and that sends and
receives traffic information to and from a server.

• Social networking applications, where users can track the location of their
friends on their mobile device.

None of these case studies can function in a sandbox. On the other hand, the risk
of giving full power to third party applications is substantial.

A second disadvantage of the current security model is that no precise meaning
is associated with the signatures of trusted third parties: a signature either means
that the application comes from the software factory of the signatory or that the
signatory vouches for the software, but there is no clear definition of what guarantees
it offers. Hence, device owners trust the third party both for (a) appropriate vetting
of applications, and (b) using a suitable notion of good behavior. Incidents [101]
show that the current security model is inappropriate.
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3.2.2 Application contracts and policies
The SxC paradigm addresses the shortcomings of the current mobile device security
model.

A key ingredient is the notion of an application security contract. Such a contract
specifies the security behavior of the application. Technically, a contract is a security
automaton in the sense of Schneider [112], and it specifies an upper bound on
the security-relevant behavior of the application: the sequences of security-relevant
events that an application can generate are all in the language accepted by the
security automaton. Other models of contracts have been proposed in the domain
of security policies, notably versions of temporal logic, [71, 104, 67, 115].

Mobile devices are equipped with a security policy, a security automaton that
specifies the behavior that is considered acceptable by the device owner. The key
task of the S3MS device run-time environment is to ensure that all applications will
comply with the device security policy. To achieve this, the run-time can make use
of the contract associated with the application (if it has one), and of a variety of
policy enforcement technologies:

• Monitor inlining, a program rewriting technique to ensure that a program
complies with a given policy.

• Contract-policy matching [90], the process of checking whether the security
behavior specified in a contract is a subset of the allowed security behavior
specified in a policy.

• Explicit run-time monitoring for compliance with policies.

All these enforcement technologies can run on-device. Some of them (matching and
inlining) can also be provided as a web service that the device can call during the
installation of an application on the device.

An application contract is a statement about the behavior of an application,
and there is no a priori guarantee that this statement is correct. Testing and static
analysis can be used at development time to increase confidence in the contract. In
addition, monitor inlining of the contract at development time can provide strong
assurance of compliance.

If the device makes security decisions based on the contract (for instance when it
uses contract-policy matching), then there is a clear need to transfer these develop-
ment-time guarantees to the device that will eventually execute the application.
Without a secure transfer of these guarantees, it would be easy for an attacker to
modify either the application or the contract. Two key technologies support this
transfer:

1. A cryptographic signature by a trusted third party can vouch for application-
contract compliance. Note the difference with the use of signatures in the
traditional mobile device security model. In the S3MS approach, a signature
has a clear semantics: the third party claims that the application respects
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the supplied contract [37]. Moreover, what is important is the fact that the
decision whether the contract is acceptable or not remains with the end user.

2. Proof-carrying-code techniques can be used, to enable verification on the mo-
bile device of contract compliance proofs constructed by the program devel-
oper (as described in the paper presented in Chapter 2).

3.2.3 Example: Mobile 2-player Chess

As an example application (also used as a case study in the S3MS project), we
consider a two-player chess game running on the .NET Compact Framework. This
application supports standalone games (where two players play chess against each
other on the same device), as well as games between two devices communicating over
either a TCP/IP network, or using text messages (SMS’s). Chess games rarely take
more than 70 moves per player to finish, and the chess program enforces a hard
upper limit of 100 moves. As a consequence, the program’s contract can specify
hard upper bounds on its use of communication resources. One move either takes
20 bytes of TCP traffic, or 1 SMS. Hence, one run of the program will consume
at most 2000 bytes of network traffic, and send at most 100 SMS messages. The
contract in Figure. 3.1 specifies this.

The contract is expressed in the ConSpec policy language [2]. A ConSpec spec-
ification tells when and with what arguments an API method may be invoked. If
the specification has one or more constraints on a method, the method is said to be
a security relevant method (SRM).

The first part of the contract declares the security state. This security state
contains a definition of all the variables that will be used in the contract, and
defines the set of states of the corresponding security automaton. In the example
contract, two state variables maintain (1) the number of bytes that have already
been sent over the network, and (2) the number of SMS messages that have been
sent.

The security state declaration is followed by one or more clauses. Each clause
represents a rule on a security-relevant API method call. These rules can be eval-
uated before the method is called, after the method is called, or when an excep-
tion occurs. A clause definition consists of the before, after or exceptional
keyword, the signature of the method on which the rule is defined, and a list of
guard/update blocks. The guard is a boolean expression that is evaluated when a
rule is being processed. The guard may mention variables from the security state
declaration, arguments given in the method call and the return value (if it is part
of an after clause). If the guard evaluates to true, the corresponding update block
is executed. All state changes that should occur can be incorporated in this up-
date block. When a guard evaluates to true, the evaluation of the following guards
(and consequently the potential execution of their corresponding update blocks) is
skipped.
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security state
int bytesSent = 0;
int smsSent = 0;

before System.Net.Sockets.Socket.Send(byte[] array)
perform array.Length == 20 && bytesSent + array.Length ≤ 2000→ {}

after int sent = System.Net.Sockets.Socket.Send(byte[] array)
perform true → {bytesSent+ = sent; }
before Microsoft.WindowsMobile.PocketOutlook.SmsMessage.Send()
perform smsSent ≤ 100→ {}

after Microsoft.WindowsMobile.PocketOutlook.SmsMessage.Send()
perform true → {smsSent+ = 1; }

Figure 3.1: A ConSpec contract for the chess game.

security state int bytesSent = 0;

before System.Net.Sockets.Socket.Send(byte[] array)
perform bytesSent + array.Length ≤ 10000→ {}

after int sent = System.Net.Sockets.Socket.Send(byte[] array)
perform true → {bytesSent+ = sent; }

Figure 3.2: An example device policy.

If none of the guards evaluates to true, this means the contract does not allow
the method call. For example, in Figure 3.1, if the current state of the policy has
bytesSent = 2000, then a call to the Send method with an array of length 20 will
fail all the guards.

Note that the contract can be quite specific about the behavior of the applica-
tion. For instance, the example contract specifies explicitly that the application will
only send messages consisting of 20 bytes over the TCP/IP network. The contract
also encodes the upper bound of 100 moves enforced by the application.

The contract in Figure 3.1 matches with a device policy that limits network
traffic to (for instance) 10 kilobytes. Such a policy is shown in Figure 3.2. Note
the differences between the contract and the policy: while both are written in
ConSpec, and both semantically correspond to security automata, the device policy
for instance does not make any assumptions about the size of messages sent (beyond
the fact that the total size of traffic is limited to 10 kilobytes).

For the remainder of the paper we focus on inlining of policies in multi-threaded
Java bytecode. But, the techniques are equally applicable to contracts (instead of
policies) and to .NET (instead of Java) [34].
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3.3 A Multithreaded Program Model 1

This paper focuses on multithreaded Java bytecode. The program model used in this
chapter inherits most of the definitions from the previous chapter. Issues regarding
inheritance and dynamic binding are ignored in this paper since it has already been
addressed in previous work and since it is orthogonal to the challenges introduced
by adding concurrency.

Multithreaded programs are specified the same way as single threaded programs
are, except for the addition of two instructions: monitorenter and monitorexit.
The main difference in the program model lies in the JVM runtime configuration.
Whereas the configuration of a single threaded program has a single activation
record stack, a configuration of a multithreaded program has one activation record
stack per thread. We model this as a map, Θ, from thread identifiers, tid ∈ N
to activation record stacks, S. The synchronization mechanism provided by the
JVM specifies that each object may be used as a semaphore (acquired and released
through monitorenter resp. monitorexit) held by at most one thread. This is
modeled by a partial map, Λ : o → tid, mapping objects to their owning threads.
A configurations thus looks as follows: (h,Λ,Θ).

3.3.1 Executions and Traces

An execution of a program Prg is, just as in the single threaded case, a finite
(or infinite) sequence of configurations E = C0C1 . . . (Ck) with the additional con-
straint that E is compatible with the happens-before relation as defined by the
Java Language Specification (JLS3) [59]. (The implications of this constraint will
be elaborated upon in Section 3.3.2 below.) The initial configuration consists of a
single thread with a single, normal activation record with an empty stack, no values
for local variables, with the main method of Prg as its current method and with
pc = 0.

Since we are interested in inliners that are independent of implementation details
concerning e.g. scheduling, memory management and error handling we do not make
any distinctions between executions that are allowed by the JLS3 memory model
and executions that are possible for an actual implementation.

Observable actions are extended to include the identifier of the thread that
performed the action, i.e. a before action for example, has the shape (tid, c.m, o, v)↑.
The trace of E, ω(E), is the sequence α0α1 . . . with τ actions removed, and T (Prg) =
{ω(E) | E is an execution of Prg}. In this paper we restrict attention to traces T
that are realizable, in the sense that T = ω(E) for some execution E.

3.3.2 Field Accesses and Legal Executions

In this paper, we wish to reason about the behavior of arbitrary multithreaded pro-
grams. Therefore, we cannot assume that the programs we consider are correctly

1This section has been rewritten to avoid overlap with Section 2.2.
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synchronized. This complicates our execution semantics, because non-correctly-
synchronized programs may exhibit non-sequentially-consistent executions (Chap-
ter 17 of JLS3 [59]). An execution is sequentially consistent if there is a total order
on the field accesses in the execution such that each read of a field yields the value
written by the most recent preceding write of that field in this total order. In order
to ensure that our semantics captures all possible executions of a program, the tran-
sition relation → does not constrain the value yielded by a field read; specifically,
it does not imply that this value is the value in the heap for that field. However,
JLS3 does provide some guarantees, even for non-correctly-synchronized programs.
Therefore, below we will consider only legal executions. A legal execution is an ex-
ecution which satisfies both the transition relation → and the memory consistency
constraints of JLS3.

The happens-before order [59] is a partial order on the transitions in an execu-
tion. It consists of the program order (ordering of two actions performed by the
same thread) and the synchronizes-with order (order induced by synchronization
constructs), and the transitive closure of the union of these.

An important guarantee provided by JLS3 that we rely on in this paper, is that
if in some legal execution a given field is protected by a given lock, then each read
of that field yields the value written by the most recent preceding write of that
field. We say that a given field is protected by a given lock in a given execution, if
whenever a thread accesses the field, it holds the lock.

3.3.3 Transition Semantics

The transition semantics is similar to the single threaded case. The contextual rule
for local variable and stack transitions changes from

S → S′

(h, S)→ (h, S′) to Θ(tid) = S S → S′

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ S′])

To support thread creation there is a distinguished API method, Thread.start
which has, besides the standard effect of an API call discussed in Section 2.2.4, an
additional side effect of creating a new thread in the configuration:

Θ(tid) = (M, pc, o :: s, l) :: S fresh(tid ′)
M [pc] = invokevirtual Thread.start h ` o : c

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (�) :: Θ(tid)] ∪ (tid ′ 7→ (c.run, 0, ε, ε)))

The rules for the locking instructions, monitorenter and monitorexit update the
lock map as expected:

Θ(tid) = (M, pc, v :: s, l) :: S
M [pc] = monitorenter Λ(v) ∈ {⊥, tid}

(h,Λ,Θ)→ (h,Λ[v 7→ tid],Θ[tid 7→ (M, pc + 1, s, l) :: S])
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Θ(tid) = (M, pc, v :: s, l) :: S
M [pc] = monitorexit Λ(v) = tid

(h,Λ,Θ)→ (h,Λ[v 7→ ⊥],Θ[tid 7→ (M, pc + 1, s, l) :: S])

As discussed in Section 3.3.2, field reads return an arbitrary value, and these
rules should be complemented with the Java memory model constraints. In partic-
ular, a read of a field is guaranteed to always yields the value last written to that
field as long as there is a synchronizes-with relation between the read and the write.
This is however a constraint of the execution rather than the transition between
two configurations, and thus not expressed as a constraint in the rule below.

Θ(tid) = (M, pc, v :: s, l) :: S M [pc] = putstatic c.f
(h,Λ,Θ)→ (h[c.f 7→ v],Λ,Θ[tid 7→ (M, pc + 1, s, l) :: S])

Θ(tid) = (M, pc, s, l) :: S M [pc] = getstatic c.f
(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (M, pc + 1, v :: s, l) :: S])

3.4 Security Automata
ConSpec policies are formalized in terms of security automata. The notion of secu-
rity automata was introduced by Schneider [112]. In this paper we view a security
automaton as an automaton A = (Q,Ω, δ, q0) where Q is a countable (not necessar-
ily finite) set of states, q0 ∈ Q is the initial state, and δ : Q× Ω ⇀ Q is a (partial)
transition function, where Ω = Ω↑ ∪ Ω↓ ∪ Ω⇓ is the set of observable actions. All
states q ∈ Q are viewed as accepting.

Notation 1. For a security automaton A = (Q,Ω, δ, q0), q α−→ q′ abbreviates the
condition q′ = δ(q, α).

A security automaton can be derived from a ConSpec policy in the obvious
manner. We refer to [1] for details. We assume after clauses of the ConSpec policy
to be exhaustive such that an after action can never fail, but it can update the
security state.

Definition 9 (Policy Adherence). The program Prg adheres to security policy PA,
if for all executions E of Prg, ω(E) ∈ PA.

3.5 Inlining
By inlining we refer to the procedure of compiling a contract into a JVML based
reference monitor and embedding this monitor into a target program. Formally, an
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inliner is a function I which for each policy P and program Prg produces an inlined
program I(P,Prg). The intention is that the inserted code enforces compliance
with the policy, and otherwise interferes with the execution of the client program
as little as possible.

In this section, we first look at various correctness properties for inliners. Then,
we introduce the design of our inliner and we prove its correctness.

3.5.1 Inlining Correctness Properties
We first look at the traditional correctness properties for inliners: security, conserva-
tivity, and transparency. Then, we introduce a number of new correctness properties
that deal with complications caused by the setting of multithreaded Java-like pro-
grams: strong conservativity, relative strong conservativity, and weak transparency.

For an inliner whose only expected functionality is to intercept and abort ex-
ecution of an underlying client program in case of policy violation there are three
correctness properties of fundamental interest (cf. [82] for the case of edit automata).
Namely, the inliner should enforce policy adherence (security), it should not add
new behavior (conservativity), and it should not remove policy-adherent behavior
(transparency). More formally:

Definition 10 (Inliner Correctness Properties). An inliner I is:

• Secure if, for every program Prg, every trace of the inlined program I(P,Prg)
adheres to P, i.e. T (I(P,Prg)) ⊆ P.

• Conservative if, for every program Prg, every trace of the inlined program
I(P,Prg) is a trace of P , i.e. T (I(P, P )) ⊆ T (P ).

• Transparent, if every adherent trace of the client program is also a trace of
the inlined program, i.e. if T (P ) ∩ P ⊆ T (I(P, P )).

Recall from Section 3.3.1 that the set of traces T (P ) of a program P is the set
of the sequences T of observable actions (i.e. API calls and normal and exceptional
returns from API calls) such that there is a (partial or complete) execution of the
program whose observable trace is T .

Unfortunately, in case the client program is not well-synchronized, transparency
is infeasible in general, because it is not possible to perform inlining without in-
troducing extra synchronization and consequently eliminating certain executions.
To illustrate this, consider the program of Figure 3.3. This program is not well-
synchronized, since there are data races on fields beforeA and afterA. Specifically,
threads 1 and 2 do not synchronize their accesses of these fields. In the presence of
data races, the semantics of Java allow field accesses to appear out of order (this is
necessary to allow the JIT compiler, which compiles bytecode to machine code, and
the hardware to perform important optimizations). In the example, suppose the
body of method sra is a simple field assignment. In that case, the JIT compiler can
inline this method and then reorder the field accesses, since they are independent.
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Thread 1: beforeA = 1; Thread 2: x = afterA;
sra(); (A) sra(); (B)
afterA = 1; y = beforeA;

if (x == 1 && y == 0)
sra(); (C)

Figure 3.3: Transparency counterexample.

This is why an execution where x gets the value 1 and y gets the value 0 is a legal
execution. As a result, the program has a trace with three sra() calls.

Now, consider the inlined version of this program. In general, the inlined code
needs to access the security state; since multiple security-relevant calls may occur
concurrently, these accesses must be synchronized. This means that in general,
the inliner inserts synchronization constructs before and after each sra() call. As a
result, the JIT compiler is no longer allowed to move the accesses of beforeA and
afterA across the sra() calls, and the execution where x equals 1 and y equals 0 is
no longer legal. Therefore, the inlined program does not have a trace with three
sra() calls, which means that the inliner is not transparent.

For this reason, the transparency property is only really meaningful for well-
synchronized programs. For this restricted case, however, transparency still serves
as a useful correctness check: An inliner which is transparent for well-synchronized
clients (and, which is secure and conservative) must necessarily exploit race condi-
tions to interfere in an undesirable way with a client program. However, to allow also
for programs that are ill-synchronized we look for alternative correctness criteria.

Definition 11. The truncation truncP(T ) of a trace T under a policy P is the
greatest prefix of T that adheres to P.

Thus, if T adheres to P, truncP(T ) = T , and otherwise T is of the form α0 · · ·αn
such that, for some i : 0 ≤ i < n, α0 · · ·αi ∈ P and α0 · · ·αi+1 6∈ P.

Definition 12 (Strong Conservativity). An inliner I for a given policy P is strongly
conservative if, for each program Prg, every complete trace (every trace which is not
a prefix of any other trace) of the inlined program I(P,Prg) is the truncation of a
complete trace of Prg under P:

Tc(I(P,Prg)) ⊆ truncP(Tc(Prg))

Example 3. An abstract version of the program in Figure 3.3 might have traces
AB, BA, ABC and BAC, all complete and all in P. Suppose the set of complete
traces of I(P,Prg) is {AB,BA}. The inliner I is strongly conservative (for this
particular program), but not transparent. As another example suppose Prg′ accepts
the traces A, AB, AC, ABC such that A,AB ∈ P, AC,ABC 6∈ P, and AC,
ABC, but not A, AB, are complete. Suppose the only trace of I(P,Prg′) is A (so
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A is complete). Again, I is strongly conservative (for the program Prg′) but not
transparent.

Proposition 1. An inliner which is strongly conservative is secure and conserva-
tive.

Proof. Let T be an arbitrary trace of I(P,Prg). Pick some T ′ ∈ Tc(I(P,Prg)) such
that T is a prefix of T ′. By strong conservativity we know that T ′ ∈ truncP(Tc(Prg)).
By the definition of truncP we know that T ′ ∈ P and that T ′ ∈ Tc(Prg). Since each
policy is prefix-closed, we have T ∈ I(P,Prg) (the inliner is secure) and since each
set of traces emitted by a program is prefix-closed, we have T ∈ T (Prg) (the inliner
is conservative).

Strong conservativity implies that the inliner does not add new termination or
deadlock behavior. But, in a threaded setting inliners typically use locks to access
shared resources, in particular the security state. This may constrain the order of
actions. In particular, as is the case in this paper, if the security state is locked
across the entire security-relevant call, each such call must be completed before a
new security-relevant call can take place. But this may not be compatible with
constraints induced by the API, as the following example shows.

Example 4. Consider an API A with a barrier method m that allows two threads
to synchronize as follows: When one thread calls m, the thread blocks until the other
thread calls m as well. Suppose this method is considered to be security-relevant,
and the inliner, to protect its state, acquires a global lock while performing each
security-relevant call. This inliner is strongly conservative: The notion of complete
trace simply does not take constraints induced by the API into account. On the
other hand a client program may consist of two threads, each calling m and then
terminating. The inlined version will have one complete trace where one of the
threads enters m and then blocks. An uninlined complete trace will contain two
calls and returns of m. Thus the inlined complete trace will not be the truncation
of an uninlined one at the point of policy violation.

So the definition of strong conservativity needs to be amended to take such
order-inducing API calls into account. Note that the JVM semantics of API calls
given in Section 2.2 of Chapter 2 does not do this.

Definition 13 (Relative Strong Conservativity). An inliner I is strongly conser-
vative relative to the API A, if for each policy P and each program Prg,

ω(execcA(I(P,Prg))) ⊆ truncP(ω(execcA(Prg)))

where execcA(Prg) denotes the set of complete executions of Prg in the API A.

An implication of this definition is that, if in some execution E in some API
the inliner kicks in and blocks an SRA α, then there will be an execution of the
uninlined program which after the trace of E executes α. The condition does not
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guarantee, however, that E without the inliner next would have performed α. This
is a consequence of our strictly observational definition of strong conservativity; if
more precision is needed, one needs to take internal intermediate states into account,
e.g. using bisimulation-based techniques.

As we noted above, inliners generally cannot be transparent for ill-synchronized
programs. In fact, some reasonable inliners are not transparent even for well-
synchronized programs, because they force the start action and the return action
of a security-relevant call to occur atomically, for instance by locking (as we do in
this paper).

In that case there may be client program traces with nonatomic API calls and
returns that cannot be realized after inlining, only because of execution constraints
induced by the inliner. However, these inliners may still be transparent after canon-
icalization of the traces with respect to a set of atomic methods:

Definition 14. A method m is atomic in a trace T if, for every normal or excep-
tional return action from m performed by a thread t in T , no observable action by
t intervenes between this return action and the corresponding call action.

Consider for instance methods m and m′ with call and return actions callm(t),
retm(t), etc, performed by thread t. Then m is atomic in the traces callm(t)retm(t)
callm′(t) and callm(t)callm′(t′)retm(t) (with t′ 6= t) but not in the trace callm(t)
callm′(t)retm(t). Notice that ”m is atomic in T” is equivalent to stating that ”m
does not perform callbacks in T”.

Definition 15. Let an API A be given. The canonicalization of the trace T with
respect to A is the trace canonA(T ) obtained by moving each normal or exceptional
return action from a method m in A in T right after the corresponding call action.

The following is an immediate consequence of our assumptions on the JLS3
execution model in Section 3.3.2:

Proposition 2. Suppose all methods of API A are atomic in all traces of Prg. If
T is a trace of Prg so is canonA(T ).

Proposition 2 presupposes the “order-oblivious” API semantics of Section 2.2.5,
as order-inducing API calls may prevent the shuffling around of return actions
needed for the proof.

For inliners that force atomicity of API calls a suitable weakening of the trans-
parency conditions restricts attention to canonic traces in the following way.

Definition 16. An inliner I is weakly transparent relative to an API A, if for
every policy P, every program Prg, and every trace T of Prg that adheres to P, the
canonicalization of T equals the canonicalization of some trace of I(P,Prg), i.e.

canonA(ω(execA(Prg)) ∩ P) ⊆ canonA(ω(execA(I(P,Prg))))

Notice that weak transparency only makes sense for policies that are closed
under canonicalization.
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3.5.2 Example Inliner
In order to enforce a policy through inlining, it is convenient to be able to statically
decide whether a given event clause applies to a given call instruction. Therefore,
in this example inliner, we impose the restriction on policies that they should have
simple call matching. We say a policy has simple call matching if for any security-
relevant method c.m, an invokevirtual d.m call is bound at run time to method
c.m if and only if d = c. We deal with the full inheritance problem in earlier
work [28] (Chapter 2 of this thesis).

For simplicity, we also require that the initial values for the security state vari-
ables specified by the policy are the default initial values for their corresponding
Java types.

The inliner we propose replaces each instruction L : invokevirtual c.m where
c.m is security-relevant by JVML code corresponding to the pseudo code in Fig-
ure 3.4. The replacement is referred to as a block of inlined code.

The inliner locks the security state and stores arguments to the virtual call for
use in event handler code. Each piece of event code evaluates guards by reference
to the security state and the stored arguments, and updates the state according
to the matching clause, or exits, if no matching clause is found. Before passing
control to the API method, the original arguments are restored, and immediately
upon return the return value on the operand stack is stored in a local variable.
On normal return, after successful completion of the normal return event handler
code the security state is unlocked and the inlined code fragment is exited. On
exceptional return the exception is instead rethrown.

We now prove two central lemmas regarding the inlining strategy described in
Figure 3.4 which we will be referring to when proving the overall correctness of the
inliner.

Lemma 5. The following three properties hold for any block of inlined code:

1. Whenever control of a thread transfers into a section of inlined code, it does
so at label L.

2. Whenever the control of a thread exits a section of inlined code, it does so at
label excReleased or done.

3. Assuming the state of the IRM (the fields of the SecState class) equals the
state of the security automaton before entering a section of inlined code, the
inlined code will update the IRM state the same way as the observable actions
associated with the security relevant method call will update the state of the
security automaton.

Proof. For (1) we note that L was originally the label of the invoke instruction, so
any jumps in the original program which had the invoke instruction as its destination
will be rerouted to L. Since all other labels in the inlined block are “fresh” there
will be no jump from any non-inlined instruction, to an inlined instruction.
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Inlined Label Instruction Inlined Label Instruction
L: ldc SecState afterGj : [eval after Gj]

monitorenter ifeq exit
[after update j]

astore 0
... afterEnd: aload n
astore n− 1

ldc SecState
beforeG1 : [eval before G1] monitorexit

ifeq beforeG2
[before update 1] afterReleased: goto done
goto beforeEnd
... excG1 : [eval exceptional G1]

ifeq exceptionalG2
beforeGi : [eval before Gi] [exceptional update 1]

ifeq exit goto excEnd
[before update i]

...
beforeEnd: aload n− 1 exceptinoalGk : [eval exceptional Gk]

... ifeq exit
aload 0 [exceptional update k]

invoke: invokevirtual c.m excEnd: ldc SecState
monitorexit

invokeDone: astore n
excReleased: athrow

afterG1 : [eval after G1]
ifeq afterG2 exit: iconst −1
[after update 1] invokestatic System.exit
goto afterEnd
... done:

Extra entries in exception handler array:

From To Target Type
invoke invokeDone excG1 any
L excReleased exit any
exit done exit any

Figure 3.4: The inlining replacement of L: invokevirtual c.m.
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Label IRM state PA state
L s q
...

...
...

beforeG1 s q
invoke δ(s, αb) q
invokeDone δ(s, αb) δ(q, αb)
afterG1 δ(s, αb) δ(δ(q, αb), αa)
afterReleased δ(δ(s, αb), αa) δ(δ(q, αb), αa)
excG1 δ(s, αb) δ(δ(q, αb), αe)
excReleased δ(δ(s, αb), αe) δ(δ(q, αb), αe)
done δ(δ(s, αb), αa) δ(δ(q, αb), αa)

Table 3.1: IRM state and security automaton state during execution of a block of
inlined code. (The actions αb, αa and αe represents (tid, c.m, v)↑, (tid, c.m, v, r)↓,
(tid, c.m, v, t)⇓ respectively.)

Item (2) holds by inspection of the control flow of the inlined block of code.
For (3) we reason as follows. The IRM state and automaton state are unchanged

up until beforeG1 . The instructions ranging from beforeG1 through beforeEnd will
evaluate the guards and clauses from top to bottom according to the policy se-
mantics and will update the IRM state from s to δ(s, αb) (where αb represents the
before action (tid, c.m, v)↑). The aload and astore instructions guarantees that
the same arguments are used in the IRM state update as the observable action. The
invocation of the security relevant method will then update the security automaton
state the same way. Same reasoning applies for the after clauses and exceptional
clauses except that in these cases the IRM state and security automaton state will
be updated in the opposite order. The state of the IRM and the security automaton
at each label is summarized in Table 3.1. The result follows from the fact that the
IRM state and security automaton state are equal at done and at excReleased which
are the only possible exit points according to (2).

Lemma 6. All modifications to the IRM state and all policy automaton transitions
are performed under protection of the SecState.class lock.

Proof. The identifier of the security state class is chosen not to conflict with any
identifiers of the original program, so no instructions of the original program can
affect the security state. The result follows from item 1 and 2 of Lemma 5 and
the fact that the lock is acquired at label L and released right before done and
excReleased.

The two main complications which we had to address when designing this inliner
are the possibility of internal exceptions, and the interaction of our locking strategy
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with API-induced ordering constraints.
The Java Virtual Machine Specification [86] allows a JVM to throw an Internal-

Error or UnknownError exception at any time whatsoever. This means that, for
instance if the JIT compiler runs out of memory, it can throw such an internal excep-
tion instead of having to terminate the entire program. Whereas internal exceptions
are useful for JVM implementers, they cause complications for the design of our in-
liner. Specifically, for security, we must maintain the property that whenever no
block of inlined code is being executed, the current security state corresponds to the
trace of security-relevant actions performed previously during the execution. If an
internal exception were to cause control to exit a block of inlined code prematurely,
this property would be violated. Therefore, we catch all exceptions that occur any-
where in the inlined code and, when any exception is thrown by any instruction
other than the security-relevant call, we exit the program. Notice that this is secure
and conservative but not strongly conservative, since we exit at a place where the
original program does not exit. Below, we prove strong conservativity of our inliner
under the assumption that the JVM is error-free, i.e. it never throws an internal
exception.

The other complication is caused by our choice of locking strategy. Since the
program may perform multiple security-relevant calls concurrently, accesses to the
security state by the inlined code must be synchronized. We do so by protecting
the security state using a lock. There are essentially two ways to do so: acquire the
lock for the entire duration of the inlined code (strong synchronization), or acquire
it once when processing the before action, release it before performing the security-
relevant call, and then acquire it again for processing the after or exceptional action
(weak synchronization, analogous to the behavior of the PoET/PSLang inliner [40]).
In this paper, we adopted strong synchronization; it has the advantage that both
actions associated with a given security-relevant call (i.e. the before action and the
after or exceptional action) always occur together, whereas in the case of weak syn-
chronization, the actions from multiple security-relevant calls may be interleaved,
leading to a less intuitive policy semantics. A downside of strong synchronization,
however, is that it is not applicable in the case where security-relevant methods
have synchronization behavior themselves, as discussed above. Indeed, in that case,
strong synchronization may introduce deadlocks that did not exist in the original
program. Therefore, below, we prove strong conservativity under the assumption
that security-relevant methods are non-blocking. Furthermore, strong synchroniza-
tion is not appropriate when the security-relevant methods include long-running
operations that benefit from concurrent execution.

We now proceed to state and prove two correctness theorems for our inliner. The
first is general, and applies to both ill-synchronized and well-synchronized programs.
The second additionally states weak transparency for well-synchronized programs.

Definition 17 (Non-blocking Method). A method c.m in API A is non-blocking,
if for all programs Prg and all executions E ∈ execA(Prg) either:

1. E is infinite, or
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2. E is terminating, or

3. E is deadlocked with final configuration C, and no thread in C is inside c.m.

Theorem 6. Let I be the inliner of Figure 3.4.

1. I is secure

2. I is conservative.

3. For an error-free JVM, and relative to an API for which each SRM is non-
blocking, the inliner I is strongly conservative.

Proof. For security, let E = C0 . . . (Ck) where Ci = (hi,Λi,Θi) be an execution of
I(P,Prg). Furthermore let sec(Ci) denote the state of the IRM in configuration Ci
(the tuple of the values of the static fields in SecState as defined by hi) and let qi be
the state of PA after reading ω(C0 . . . Ci). We now show the following invariant: If a
thread tid holds the lock of the security state in Ci, that is if Λi(SecState.class) = tid
(abbreviated as lockedi), then sec(Ci) and qi have the values specified in Table 3.1
(denoted by secinl(pc) and qinl(pc)) where pc is the current program counter of
Θi(tid), otherwise (i.e. if ¬lockedi holds) sec(Ci) = qi. Put formally,

Ii ≡ (lockedi ⇒ sec(Ci) = secinl(pc) ∧ qi = qinl(pc)) ∧ (¬lockedi ⇒ sec(Ci) = qi)

This invariant is shown to hold throughout the execution by induction over the
length of E. For the base case, E = C0 it holds since the policy state is assumed to
be initialized with the default values of the corresponding Java types, which is also
what the fields of the SecState class holds in h0. For the inductive step we need to
show that if Cn−1 → Cn and In−1 holds, then In holds. We split this step into four
cases:

1. If ¬lockedn−1 and ¬lockedn (the transition is performed outside an inlined
block of code) then by the induction hypothesis sec(Cn−1) = qn−1. Since no
SRA occurs outside of a locked region of code we have qn−1 = qn and since
all modifications to the IRM state is performed under the lock (Lemma 6) we
have sec(Cn−1) = sec(Cn) thus sec(Cn) = qn.

2. If ¬lockedn−1 and lockedn we have a transition from original code to inlined
code. Since such transition neither affects the state of the IRM nor the policy
automaton state, we have, by the induction hypothesis, sec(Cn) = qn which
is in accordance with the values in Table 3.1 for the first label of the inlined
code. That is sec(Ci) = secinl(pc) and qi = qinl(pc) for the pc of the thread
that acquired the security lock.

3. If lockedn−1 and lockedn then the transition is either performed by the thread
holding the security lock, or by a thread not holding the security lock. In the
former case, the thread updates the values according to Table 3.1 (as shown in



68
CHAPTER 3. PROVABLY CORRECT INLINE MONITORING FOR

MULTITHREADED JAVA-LIKE PROGRAMS

Lemma 5) and in the latter case the values (and the pc of the thread holding
the security lock) are unchanged for the same reason as described in case (1).
In both cases In hold.

4. If lockedn−1 and ¬lockedn the thread holding the security lock just released
it. As can be seen in Lemma 5 we have sec(Ci) = qi at each monitorexit,
thus In holds.

By the fact that the IRM state cannot hold the undefined value ⊥ and by the
fact that the policy automaton state either equals the IRM state or holds a value
according to Table 3.1 we know that qi 6= ⊥ for all i = 0 . . . k, i.e. ω(E) ∈ P.

For conservativity we need to show that each possible trace of I(P,Prg) is also
a possible trace of Prg. Since inlined code never affects the values of the variables in
the original program, and since the inliner only adds synchronization, each execution
of I(P,Prg) can be simulated by Prg in a way such that all observable actions are
preserved. How this is done is described in detail in the proof of Theorem 11 which
deals with the slightly more general case of a non-blocking inliner.

We now turn to the third item. Assume an error-free JVM and let P and Prg be
given, and assume that the API A is non-blocking with respect to the SRMs of the
policy. Consider an execution E ∈ execA(I(P,Prg)), and let T = ω(E). There are
three cases: Either (1) E is infinite, (2) E is terminating, or (3) E is deadlocked.

(1) We claim it is possible to extract from E another execution E′ which replaces
each complete execution of an inlined block with the execution of the single
invokevirtual instruction for which the block was inserted, and which replaces
each partial execution with either nothing or the invokevirtual instruction,
depending on whether the instruction concerned is eventually executed in E
or not (note that we do not assume fairness so it is possible for a thread from
some point onwards never to be scheduled again). Note that this replacement
can be done in parallel, since SecState.class locks all accesses to the security
state.
To see how this is done let E have the shape C0 · · ·Cn · · ·Cm · · · such that
Ci = (hi,Λi,Θi), and such that, for some tid, Θn(tid) = (Mn, pcn, sn, rn) :: S,
Θm(tid) = (Mn, pcm, sm, rm) :: S, pcn points to label L in Figure 3.4, pcm
points to label done, and L ≤ pci ≤ done for all i ∈ [n,m]. This situation
corresponds to the normal, complete execution of the inlined block in 3.4.
Now transform each configuration Ci as follows:

– If Λi(SecState.class) is set, unset it.
– Whenever pci is less than the pc of the invokevirtual instruction, replace
si by sn, and otherwise replace si by sm.

– Remove all register values inserted by the inliner from all ri.

A similar construction is applied to exceptional, complete executions. Since
virtual machine errors are disregarded, only the invokevirtual instruction and
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the rethrow instruction can raise exceptions. The transformation of excep-
tional thread configurations is as above, except that the entire frame is re-
placed, instead of just the operand stack and part of registers. Partial execu-
tions are handled in the obvious way. The claim, now, is that the execution
thus obtained is an infinite execution of the inlined program with all inlined
instructions replaced by noop’s and the exception tables restored accordingly.
A further transformation step eliminates the noop’s and restores the exception
tables completely, thus obtaining an execution of the original program. It is
clear that the execution remains infinite under this transformation as well.
This completes the case.

(2) Assume then that E is terminating. We claim that we can extract an execution
E′ for the uninlined program which is terminating as well, and such that
T (E) = truncP(T (E′)). If E terminates because of a call to System.exit by
an inlined block for a call of a security-relevant method c.m with target o
and arguments v in a thread tid, then this can happen only because either all
before guards have been evaluated to false, or all after guards have. The latter
cannot happen since the disjunction of the guards is a tautology, and since
the guards are evaluated correctly on the call parameters. The former can
happen only if the trace T (E)(tid, c.m, o, v) is policy violating. In this case
we can eliminate all inlined blocks from E, as above, and reroute control flow
at the end of (the transformed) E to the invokevirtual instruction, execution
of which was prevented by the exception. In this way we obtain a prefix of E′
which can be completed to satisfy the requirements of the statement.

(3) The final case is where E is deadlocked. This can only be the case if each live
thread in the final configuration, say Ck, is waiting at a lock. The lock can
be either SecState.class, or another lock set either from a client instruction,
or from an API method. In the latter case, the method call is not inlined,
since otherwise the method would be non-blocking. If all locks are set from
a client instruction or a non-inlined API call then we extract from E an
uninlined complete execution with the same trace, as above. Finally, if a
thread is waiting at a security state lock then it must be waiting at the initial
monitorenter instruction of some inlined block. But that can only be the case
if some other thread is deadlocked inside an inlined block, which is impossible,
as it would then be deadlocked inside a non-blocking SRM.

Lemma 7. Consider a set of methods m ∈ M . If the methods in M are non-
blocking, then M is atomic in any trace of any program.

Proof. By contradiction. Suppose there is a program Prg and a trace T of Prg such
that some method m ∈M performs a callback in T . Then Prg can be modified such
that it deadlocks inside the callback. It follows that m is not non-blocking.
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Theorem 7. Relative to an API for which each SRM is non-blocking, I is weakly
transparent for well-synchronized programs and policies that are closed under canon-
icalization.

Proof. Consider a policy P that is closed under canonicalization, and a well-synch-
ronized program Prg. Further consider a trace T of Prg that adheres to P. We need
to prove that there is a trace of the inlined program I(P,Prg) whose canonicaliza-
tion equals the canonicalization of T . Since each SRM is non-blocking, the SRMs
are atomic in T . Choose an execution E of Prg. Then, let E′ be the sequence of con-
figurations obtained by moving each normal or exceptional SRM return transition
in E right after the corresponding call transition. Then E′ is an execution of Prg
and its trace is canonA(T ), the canonicalization of T ; this is always true because the
SRMs are non-blocking. Now, further transform E′ by inserting the inlined code
prolog operations before each SRM call transition, and by inserting the inlined code
epilog operations after each SRM return transition. The resulting sequence of con-
figurations E′′ is a legal execution of the inlined program I(P,Prg), because Prg is
well-synchronized and therefore the extra synchronization has no influence on exist-
ing field accesses, and because canonA(T ) adheres to P. It follows that canonA(T )
is a trace of I(P,Prg). Since canonA is idempotent, canonA(canonA(T )) equals
canonA(T ) and we have proven the theorem.

3.6 Case Studies and Benchmarks
The inlining algorithm described above has been implemented in Java on top of the
bytecode engineering library, ASM [99]. We present some results and benchmarks of
this inliner in four case studies. All case studies comprise a JavaME application and
a relevant security policy and are available at http://www.csc.kth.se/~landreas/
inlining.

ImageExchange (IE) ImageExchange is a combined server/client application that
allows users to exchange images over a Bluetooth connection. The user may
choose to act as a server and publish selected images, or as a client and
download published images.
The policy in this case study restricts the program to only send the file that
was last approved by the user. We adapt the Bluetooth and user interface
API’s slightly to allow this policy to be conveniently formulated.

Snake (SN) This is a classic game of snake in which the player may submit current
score to a server over a network connection.
The policy prevents data from being sent over the network after reading from
phone memory.

MobileJam (MJ) The MobileJam application is a Bluetooth GPS based traffic
jam reporter which utilizes the online Yahoo! Maps API.
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IE SN MJ BN
Security Relevant Invokes 2 2 4 2
Original Size of Binaries 35.2 kb 23.2 kb 196.2 kb 81.8 kb
Inlining Duration 0.56 s 0.48 s 1.80 s 1.25 s
Size increase (inlining): 1.1 % 1.1 % 0.2 % 0.3 %

Table 3.2: Benchmarks for the case studies. Inlining was performed with an Intel
Core 2 CPU at 1.83 GHz with 2 Gb memory.

The policy prevents the application from connecting to any URLs other than
those starting with http://local.yahooapis.com.

BatallaNaval (BN) BatallaNaval is a multiplayer battleship game that communi-
cates through SMS messages.

In this case the policy restricts the number of sent SMS’s to a constant.

The applications originate from the case studies of the S3MS project. All pol-
icies were successfully enforced by our inliner. The benchmarks for the case studies
are summarized in Table 3.2.

3.6.1 Inlining Overhead

To determine the runtime overhead impact of inlining, a program that invoked an
empty dummy SRM in a loop was constructed. The execution time of this loop was
then measured before and after inlining. The inlining caused the execution time to
increase from 407 ms to 1358 ms when the loop iterated 106 times on a Sony-Ericsson
W810i. This indicates that the overhead in this experiment was 951 nanoseconds
per security-relevant call. This suggests that even program that performs many
security-relevant calls can be inlined with a close to negligible performance impact.
The sample policy used mentioned the dummy SRM in one before and one after
clause with two guards each.

Note, however, that the above experiment did not measure the performance
impact resulting from the loss of parallelism due to the serialization of security-
relevant calls. Clearly, this impact is highly dependent on the specific application
and its inputs.

3.7 Conclusions

We have surveyed the security-by-contract paradigm for mobile application secu-
rity proposed by the EU FP6 project S3MS. A main technical component of this
framework is monitoring and monitor inlining, and as the technical contribution of
this paper we have discussed inlining correctness criteria suitable for multi-threaded



72
CHAPTER 3. PROVABLY CORRECT INLINE MONITORING FOR

MULTITHREADED JAVA-LIKE PROGRAMS

bytecode in the style of Java and .NET, and used the criteria to prove correctness
for a concrete inlining algorithm.

The inliner we examine is blocking in the sense that the embedded security
state is locked across the security-relevant call, thus preventing concurrent accesses
to those methods. This may cause serious performance degradation, in particular for
methods involving I/O. Indeed, Erlingsson’s original inliner [40] avoids this problem
by unlocking just at the point of executing the call itself. This, however, is sound
only for policies that are race free, in the sense of being insensitive to the sequencing
of concurrent actions. This topic is addressed in the next chapter where correctness
of a non-blocking inliner is proven, but for a restricted policy language. In the
present setting one can alleviate the problem to some extent by splitting the security
state into disjoint components that are locked separately.

A number of extensions of this work merit attention. First, we do not address
inheritance in this paper. This has been considered for the case of sequential Java
in [28] (Chapter 2), and multi-threading is not likely to add significant complica-
tions. Security automata as we consider here are allowed to be infinite state. This
poses no problems for inlining, and it is very useful to correlate actions as in the
IE application considered above. (But, contract-policy matching becomes undecid-
able, for obvious reasons.) We do not allow the heap to be used in policy guards;
whereas this would be useful, allowing it creates significant theoretical and practical
problems which merit further investigation.
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Abstract

Security monitor inlining is a technique for security policy enforcement
whereby monitor functionality is injected into application code in the style
of aspect-oriented programming. The intention is that the injected code en-
forces compliance with the policy (security), and otherwise interferes with the
application as little as possible (conservativity and transparency). Such in-
liners are said to be correct. For sequential Java-like languages, inlining is
well understood, and several provably correct inliners have been proposed. For
multithreaded Java one difficulty is the need to maintain a shared monitor
state. We show that this problem introduces fundamental limitations in the
type of security policies that can be correctly enforced by inlining. A class
of race free policies is identified that characterizes the inlineable policies by
showing that inlining of a policy outside this class is either not secure or not
transparent, and by exhibiting a concrete inliner for policies inside the class
which is secure, conservative for arbitrary programs and transparent for well-
synchronized programs. The inliner is implemented for Java and applied to
a number of practical security policies. Finally, we discuss how certification
in the style of Proof-Carrying Code could be supported for inlined programs
by using annotations to reduce a potentially complex verification problem for
multithreaded Java bytecode to sequential verification of just the inlined code
snippets.

73
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4.1 Introduction

Security monitoring, cf. [112, 82], is a technique for security policy enforcement,
widely used for access control, authorization, and general security policy enforce-
ment in computers and networked systems. The conceptual model is simple: Secu-
rity relevant events by a program such as requests to read a certain file, or opening a
connection to a given host, are intercepted and routed to a decision point where the
appropriate action can be taken, depending on policy state such as access control
lists, or on history or other contextual information. This basic setup can be imple-
mented in many different ways, at different levels of granularity. Two approaches
of fundamental interest are known, respectively, as execution monitoring (EM) and
inlined reference monitoring (IRM) (cf. [66]). In EM [112, 131], monitors perform
the event interception and control explicitly, typically by an agent external to the
program being executed. Using IRM, cf. [43], the enforcement agent modifies the
program prior to execution in order to guarantee policy compliance, for instance
by weaving monitor functionality into the application code in an aspect oriented
style. Upon encountering a program event which may be relevant to the security
policy currently being enforced—such as an API call—the inlined code will typically
retrieve both the program state and the security state to determine if the program
event should be allowed to go ahead, and if not, terminate execution. Under the
assumption that the external monitor is only given capabilities available to an IRM,
execution monitoring and inlining enforce the same policies [66]. (In this paper se-
curity policies are viewed as sets of traces of observable, security relevant events. If
we consider broader classes of policies for e.g. information flow, program rewriting
can enforce strictly more policies [66].) But if the external monitor has stronger
capabilities, for instance the capability to perform type-unsafe operations, external
execution monitoring can be more powerful. Our first contribution is to show that
such an effect arises in a multithreaded setting. The fact that an inlined monitor can
only influence the scheduler indirectly—by means of the synchronization primitives
offered by the programming language—has the consequence that certain policies
cannot be enforced securely and transparently by an inlined reference monitor. In
support of this statement we give a simple example of a policy which an inliner is
either unable to enforce securely, or else the inliner will need to affect scheduling by
locking in a way that can result in loss of transparency, performance degradation
and, possibly, deadlocks. On the other hand, the policy is easily enforced by an
execution monitor which at each computation step can inspect the global execution
state.

In spite of this, inlining remains an attractive implementation strategy in many
applications. We identify a class of race free policies, and show that this class charac-
terizes the policies which can be enforced correctly by inlining in well-synchronized
multithreaded Java programs. We argue that the set of race free policies is in fact
the largest class that is meaningful in a multithreaded setting. Even if many inlin-
ers for multithreaded Java-like languages exist for non-race free policies [40, 7, 65],
these inliners must necessarily sacrifice either security or transparency (even for
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well-synchronized programs), and anyhow these policies are, in a multithreaded
setting, likely to not express what the policy writer intended.

The characterization result is proved in two steps: First we show that no inliner
exists which can enforce a non-race free policy both securely and transparently
without taking implementation specific details of the API, scheduler or JVM into
account. We then exhibit a concrete inliner and prove that it correctly enforces all
race free policies for well-synchronized programs.

A potential weakness of inlining is that there is a priori no way for a consumer
of an inlined piece of code to tell that inlining has been performed correctly. This
makes it hard to use IRM as a general software quality improvement tool. Also,
it generally forces inlining and execution to take place under the same jurisdiction.
To address this problem we turn to certification. For sequential code, certification
can be done using Proof-Carrying Code (PCC) [95]. In this case a code producer
essentially ships along with the code a correctness proof, which can be efficiently
validated at the time the code is invoked by the code consumer. For multithreaded
programs, however, the construction of general purpose program logics and verifica-
tion condition generators is a significant research challenge. We bypass this problem
by restricting attention to multithreaded Java bytecode produced using the IRM
presented earlier. This allows us to produce security certificates for race free Con-
Spec policies by combining existing program verification techniques for sequential
Java with a small number of syntactic checks on the received code. Certificates are
presented as bytecode augmented with a reference (“ghost”) monitor. This allows
the code consumer to validate certificates against a local, trusted policy by checking
the certificate with the monitor suitably replaced. The main result is a soundness
result, that if a certificate exists for a program with a given policy, then the program
is secure, i.e. the policy is guaranteed not to be violated.

4.1.1 Related Work

Our approach adopts the Security-by-Contract (SxC) paradigm (cf. [12, 94, 33, 75,
17]) which has been explored and developed mainly within the S3MS project [106].

Monitor inlining has been considered by a large number of authors, for a wide
range of languages, mainly sequential ones, cf. [35, 43, 42, 40, 1, 129, 66, 62, 118].
Several authors [62, 17, 7] have exploited the similarities between inlining and AOP
style aspect weaving. Erlingsson and Schneider [42] represent security automata
directly as Java code snippets. This makes the resulting code difficult to reason
about. The ConSpec policy specification language used here [2] is for tractability
restricted to API calls and (normal or exceptional) returns, and uses an independent
expression syntax. This corresponds roughly to the call/return fragment of PSLang
which includes all policies expressible using Java stack inspection [43].

Aktug et al. [1] formalized the analysis of inlined reference monitors and showed
how to systematically generate correctness proofs for the ConSpec language, but
restricted to sequential Java. Chudnov and Naumann [19] propose a provably cor-
rect inliner for an information flow monitor. They prove security and transparency,
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but again restricted to a sequential programming language.
Edit automata [83, 82] are examples of security automata that go beyond pure

monitoring, as truncations of the event stream, to allow also event insertions, for
instance to recover gracefully from policy violations. This approach has been fully
implemented for Java by Bauer and Ligatti in the Polymer tool [7] which is closely
related to Naccio [44] and PoET/PSLang [42].

Certified reference monitors has been explored by a number of authors, mainly
through type systems, e.g. in [117, 6, 133, 65, 29], but more recently also through
model checking and abstract interpretation [119, 118].

The type-based Mobile system [65] uses a simple bytecode extension to help
managing updates to the security state. The use of linear types allows security-
relevant actions to be localized to objects that have been suitably unpacked, and
the type system can then use this property to check for policy compliance. Mobile
enforces per-object policies, whereas the policies enforced in our work (as in most
work on IRM enforcement) are per session. Since Mobile leaves security state tests
and updates as primitives, it is quite possible that Mobile could be adapted, at least
to some forms of per session policies. As we show in the present paper, however,
the synchronization needed to maintain a shared security state will have non-trivial
effects. In particular the locking regime suggested in [65] forces mutually exclu-
sive access to security-relevant calls (it is blocking, in the terminology used below),
potentially resulting in deadlocks.

In [119, 118] Sridhar and Hamlen explore the idea of certifying inlined refer-
ence monitors for ActionScript using model-checking and abstract interpretations.
The approach can handle a limited range of inlining strategies including non-trivial
optimizations of inlined code. It is, however, restricted to sequential code and to
non-recursive programs. Although the certification process is efficient, the analysis
has to be carried out by the consumer.

The impact of multithreading has so far had limited systematic attention in the
literature. There are essentially two different strategies, depending on whether or
not the inliner is meant to block access to the shared security state during security
relevant events such as API method calls. In the present paper we focus attention
on the non-blocking strategy, which is the most relevant case in practice. In an ear-
lier paper [26] we have examined the blocking strategy. In that case transparency is
generally lost, as the inliner may introduce synchronization constraints that rule out
correct executions that would otherwise have been possible. However, the blocking
inlining strategy is not acceptable in practice as it may cause uncontrollable perfor-
mance degradation and deadlock which motivates our attention to the non-blocking
case in this paper.

The present paper is an extended and completely rewritten version of [23]. In
that paper the main results concerning inlineability and race free policies were pre-
sented. This version contains a more thorough and self-contained presentation of
the policy framework, rewritten and restructured proofs, and a completely rewrit-
ten presentation of the inliner. New material is the sections on case studies and
evaluation, and on certification.
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Overview of the Paper

The rest of this paper is structured as follows: We start by describing the syntax and
semantics of the security policies we consider in the paper (Section 4.3). We then
define the notion of correct (secure, transparent and conservative) reference monitor
inlining (Section 4.4) and show that these correctness criteria cannot be met for the
programs and policies previously presented (Section 4.5). An alternative, weaker
correctness criterion, is presented (Section 4.6) together with an inlining algorithm
that satisfies this criterion (Section 4.7). We then report on our experience with our
implementation in five case studies (Section 4.8). Finally we present an approach
for certifying an inlined reference monitor (Section 4.9) and present our conclusions
and future work (Section 4.10).

4.2 Program Model
The content of this section has been covered in the corresponding sections of Chap-
ter 2 and 3, and is therefore excluded from the version of the paper presented here.

4.3 Security Policies
We study security policies in terms of allowed sequences of API method invocations
and returns, as in a number of previous works, cf. [42, 7, 2, 129, 1, 26]. Our work
is based on a slight extension of the ConSpec policy specification language [2]. We
briefly present our dialect of ConSpec here for completeness.

ConSpec is similar to Erlingsson’s PSlang [42], but for tractability it describes
conditionals and state updates in a small purpose-built expression language instead
of the object language (Java, for PSLang) itself. ConSpec policies represent security
automata by providing a representation of a security state together with a set of
clauses describing how the security state is affected by the occurrence of a control
transfer action between the client code and the API. A control transfer can be either
an API method invocation, or a return action, either normal or exceptional. Con-
Spec proper allows for both per-object, per-session, and per-multisession policies.
In this paper we work exclusively with per-session policies which is the case most
interesting in practice.

4.3.1 ConSpec Policy Syntax

A ConSpec policy P consists of a security state declaration of the shape

security state type1 s1, . . . , typen sn; (4.1)

together with a list of rules. For simplicity, we require that the initial values for the
security state variables are the default initial values for their corresponding Java
types.
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A rule defines how the security automaton reacts to an API method call of a
given signature. Rules have the following general shape:

modifier [type y =] c.m(type1 x1, . . . , typen xn) [on z]
perform G1 → {F1}

...
Gm → {Fm}
[else {F}] (4.2)

where modifier is either before, after or exceptional, type, type1, . . . , typen
are the return and argument types of c.m and Gi and Fi are guards and update
statements respectively. before rules refer to pre-actions, and after and ex-
ceptional rules to normal and exceptional post-actions respectively. The method
signature following the event modifier specifies the method that the rule applies to.
If the policy has a rule defined for a method (of a given signature, of a given mod-
ifier type), the method is said to be security relevant and we refer to invocations
and returns of this method as security relevant actions. For instance, if a before
rule for method c.m of a given signature is present then invocations of c.m of that
signature are security relevant, but if no after rule is present, normal returns are
not regarded as security relevant. There is at most one rule per method defined for
each of the three event modifiers. The return value specification is absent for be-
fore rules. Each clause of the shape Gi → {Fi}, or the clause else {F} expresses
a (conditional) update of the security state in the obvious way. The else clause is
syntactic sugar for a clause with a constantly true guard. The callee qualifier on z
and the else clause are both optional except for after and exceptional rules for
which the else clause is required. Hence a policy can never forbid a return from
an API method.

The syntax of the guards Gi and update expressions, Fi and F are only described
by example in this paper. Additional examples are given in Section 4.5. The
syntactical details are not critical. The only requirements are that expressions are
side-effect free and that the expressions allow verification conditions to be efficiently
generated. Currently this is an unchecked obligation of the policy-writer but can
of course be enforced by restricting the use of methods to an allowed subset of
API methods. Guards and update expressions may refer to the state variables,
argument and return value variables and the callee variable. Guards are evaluated
top to bottom, in order to obtain a deterministic semantics. For the first guard
that evaluates to true, the corresponding update expression is executed. If no
guard evaluates to true (and no else clause is present) the rule is not allowed to
fire. This indicates a security violation and program execution must be terminated.

Example 5. The policy in Figure 4.1 states that the program has to ask the user
for permission each time it intends to send a file over Bluetooth. The specifi-
cation has two security relevant methods, JOptionPane.showConfirmDialog and
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security state String requestorUrl, requestedFile;

before BluetoothToolkit.sendFile(String destUrl,String file)
perform

requestedFile.equals(file) &&requestorUrl.equals(destUrl)→ { }

after int reply = JOptionPane.showConfirmDialog(String query)
perform

reply > 0 && goodFileQuery(query)→ {
requestedFile = queryFile(query);
requestorUrl = queryRequestor(query);

} else { }

Figure 4.1: A security specification example written in ConSpec.

security state Set initialized = new HashSet();

before C .initialize()
perform

!initialized.contains(Thread.currentThread())→ {
initialized.add(Thread.currentThread());

}

Figure 4.2: Accessing the current thread identifier in ConSpec.

BluetoothToolkit.sendFile. The specification uses the following three helper func-
tions which we leave undefined:

• goodFileQuery(query) returns true iff query is a well formulated file send
query, for instance because it matches a predefined pattern.

• queryRequestor(query) and queryFile(query) returns the requester and file sub-
strings of query respectively.

Example 6. The policy in Figure 4.2 expresses that C .initialize can only be invoked
once for each thread.

4.3.2 ConSpec Semantics
A ConSpec policy P specifies a deterministic automaton (Q,Σ, δ, q0), explained be-
low, which observes an execution of some client program and changes state, and
potentially aborts, according to the policy specification. The details are straight-
forward. Assume an execution E = C0

α0−→ · · · αn−1−−−→ Cn. The initial state q0 is
obtained by initializing the security state of P to its default, using, if necessary, a
local heap. The alphabet Σ is the set of observable actions. The state space Q is
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the set of all type safe assignments to the security state variables. Having reached
the i’th configuration of E with automaton state q, if αi = τ or if the action is not
security relevant (of the given modifier type) the i+1:th state is q as well. Otherwise
the relevant rule is extracted, variables are bound as indicated above, a matching
guard clause is identified, and the first matching update is enacted to compute a
new automaton state, and if no matching guard is found, ω(E) is rejected. If ω(E)
is not rejected it is accepted, and if the traces of all executions of a program Prg
are accepted by (the automaton determined by) P, Prg is said to adhere to P.

4.4 Reference Monitor Inlining

A reference monitor inliner (for short just inliner) is a function I that for each policy
P and program Prg produces a program I(Prg,P) with embedded policy checking
functionality.

Our program model makes a clear distinction between the (untrusted) program,
and the (trusted) API that it interacts with, and inliners are limited to rewriting the
program. This may seem to limit the applicability of our model, as some existing
inliners do rewrite the Java Platform API implementation. However, the reader
should keep in mind that what we call the API in our model does not necessarily
have to map on the Java Platform API. Any inliner has to make a choice as to what
part of the system can be rewritten and what remains unchanged. In our model,
this is what defines the boundary between program and API. Existing inliners make
different choices as to where they draw this boundary: some can rewrite all Java
bytecode (including Java Platform API methods that are themselves implemented in
Java). For such inliners the API of our model covers only the natively implemented
methods. Other inliners will only rewrite application classes and leave the entire
Java Platform API untouched. For such inliners the API of our model covers the
entire Java Platform API. If an inliner were also to rewrite the native method
implementations, then our model is not directly applicable, since we only model
Java bytecode. But a similar model where the program consists of assembly code
and the API consists of system calls could be built and would reveal the same
limitations as the one we discuss in this paper: the limitations are fundamental.

One assumption that does limit the applicability of the model is the fact that
we assume that API method invocations and returns are good abstractions of the
security relevant actions that policies want to talk about. In other words, the
limitations on enforceable policies that we identify in this paper are only applicable
to policies that talk about API method invocations and returns, where the API is
defined as above: the boundary of the part of the system that can be rewritten.
The implementation of an API method is trusted to achieve exactly the effect that
the policy writer wants to talk about. Hence we do not consider calls from within
the implementation of an API method to other API methods.

Another consequence of the model is that an inliner can never prevent an API
method from returning: inlined code can only be executed after the call has re-
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turned. This is why post-actions are required to always be enabled in ConSpec.

4.4.1 Inlining Correctness Properties
There are three correctness properties of fundamental interest (cf. [82, 66]), namely
security, conservativity and transparency.

Security, arguably the most important property of an inliner, states that all
possible traces of the inlined program should be compliant with the policy provided
to the inliner.

Definition 18 (Security). An inliner I is secure if, for every program Prg and
policy P, every trace of the inlined program I(Prg,P) adheres to P, i.e.

T (I(Prg,P)) ⊆ P.

Transparency states that the policy adherent behavior of the client program
should be preserved by the inliner.

Definition 19 (Transparency). An inliner I is transparent, if for every policy P
and program Prg, each trace of Prg that adheres to P is also a trace of the inlined
program, i.e.

T (Prg) ∩ P ⊆ T (I(Prg,P)).

Conservativity states that no behavior should be added to the original program.

Definition 20 (Conservativity). An inliner I is conservative if, for every program
Prg and policy P, every trace of the inlined program I(Prg,P) is a trace of Prg, i.e.

T (I(Prg,P)) ⊆ T (Prg).

Other correctness properties have been proposed, such as the concept of strong
conservativity, which was used in [26]. This correctness criteria refines the notion
of conservativity and forbids arbitrary truncation of the traces. Since this is mostly
useful for the case of a blocking inliner to account for the necessary loss of trans-
parency, cf. [26], we do not discuss it further in this paper.

4.5 Limitations of Inlining in a Multithreaded Setting
In this section, we show that the traditional correctness criteria for inlined moni-
tors are too strong in a multithreaded setting. While it is possible to securely and
transparently enforce any policy specified as explained in Section 4.3 by an external
monitor implemented as part of the JVM, it is impossible to do this with an in-
lined monitor without taking specificities of the API implementation and/or virtual
machine into account.

One of the key differences between an external monitor and a monitor inlined in
the client program is the ability to affect the behavior of a thread executing within
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security state
boolean ok = false;

before c.m()
perform

true → { ok = true; }

before c.n()
perform

ok == true → { }

(a) Not enforceable by inlining.

security state
boolean ok = false;

after c.m()
perform

true → {ok = true; }

beforec.n()
perform

ok == true → { }

(b) Enforceable by inlining.

Figure 4.3: Policy enforceability through monitor inlining.

class SomeClass {
public static void main(String[]args){

new Thread() { public void run() { c.m(); }}.start();
c.n();

}}

Figure 4.4: A program invoking c.m and c.n in a non-deterministic order.

an API-method. As opposed to an external reference monitor, an inlined reference
monitor cannot in general control the scheduling of such a thread, and this affects
the enforceability of certain policies.

Consider the policy in Figure 4.3a. This policy states that c.n may only be
called when ok has been set to true, that is, after c.m has been called (but not
necessarily returned). So the trace T1 = (tid, c.m, o, v)↑, (tid ′, c.n, o′, v′)↑ is allowed
by the policy, but the trace T2 = (tid ′, c.n, o′, v′)↑, (tid, c.m, o, v)↑ is not. Now
consider a program whose traces include both T1 and T2, for instance the one
shown in Figure 4.4. For an inliner to exclude trace T2 from this program (but keep
the trace T1), it could either exploit some implementation-dependent knowledge of
the virtual machine, or else it would have to introduce a happens-before relation
between (tid, c.m, o, v)↑ and (tid ′, c.n, o′, v′)↑. In the latter case we note that there
is no way such a happens-before relation can be enforced by the inliner since, by
convention, after the call has been made, the control lies within the API method
which is not to be altered. In terms of the formal semantics of API calls given
in Section 2.2.4 the former case is also ruled out. To lift this to practical virtual
machines let us say that a correctness property is uniform if it holds for all API
implementations, including the fully nondeterministic one from Chapter 2. Using
the API semantics from Chapter 2, the inlined program will either have both traces
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T1 and T2 (in which case the inliner is not secure) or it will have neither of the two
traces (in which case the inliner is not transparent). We have thus shown:

Theorem 8. No inliner can be both uniformly transparent and uniformly secure for
the policy P in Figure 4.3a.

Evidently, an inliner could “over-approximate” and guard the entire call to c.m
by a lock and let the monitor release the lock after c.m has returned, but in that
case the monitor would be enforcing the stronger policy shown in Figure 4.3b and
prevent some traces that are allowable by the policy in Figure 4.3a.

4.6 Race Free Policies
Generalizing from the example in Figure 4.3a, the key issue is that no client pro-
gram (not even after inlining) can arbitrarily constrain the set of observable traces.
Given a certain trace of observable actions, in general there will be permutations
of that trace that are also possible traces of the client program no matter what
synchronization efforts the client performs. These permutations that are always
possible are captured by the notion of client-order preserving permutations.

Definition 21 (Client-order Preserving Permutation). A permutation π(T ) of a
trace T of observable actions is client-order preserving if, for all i and j such that
i < j and (a) Ti and Tj take place on the same thread, or (b) Ti and Tj correspond
to a post- resp. pre-action, then π(i) < π(j).

The intuition is the following: the client can control pre-actions, and can only
observe post-actions. If a pre-action takes place somewhere after a post-action, the
client could have synchronized to ensure this ordering. The client cannot perform
such synchronization for concurrent pre-actions or concurrent post-actions.

If a policy accepts a given trace, but rejects a client-order preserving permuta-
tion of the trace, then that policy is not securely and transparently enforceable by
inlining a monitor in the client code. This is captured by the following definition:

Definition 22. A policy is race free iff, for any trace T and any client-order pre-
serving permutation T ′ of T , if T is allowed, then T ′ is allowed.

As an example, the policy in Figure 4.1 is race free. As a broader class of
examples consider the class of policies where the security state is a set of permissions,
pre-actions require a permission to be present in this set and cause the permission
to be removed, and post-actions restore the permission. Such policies are race free.
This can be checked for instance by using Proposition 4 below.

We show further that the class of race free policies is a lower bound on the
class of policies enforceable by inlining by constructing an inliner that is secure
and conservative (for arbitrary programs), and transparent (for well-synchronized
programs) for this class of policies.

The following theorem shows that the bound is tight.
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Theorem 9. No inliner can be uniformly secure and uniformly transparent for a
non-race free policy, and no inliner can be transparent for ill-synchronized programs.

Proof. For the first part, let P be a non-race free policy. It suffices to show that
P is not enforceable for the fully non-deterministic semantics of Section 2.2.4. By
definition there is a trace T of some program Prg which P accepts and a client-
order preserving permutation T ′ of T which P rejects. Now for an inliner, I, to be
transparent, I(Prg,P) has to admit the trace T . But, since a client-order preserv-
ing permutation respects the happens-before relations stipulated by any program,
I(Prg,P) must also admit the trace T ′, which means that I is not secure.

For the second part we refer to Section 3.5.1 in the previous chapter.

A policy for which there exists a (uniformly) secure, transparent and conserva-
tive inliner is said to be (uniformly) inlineable. The corollary below follows imme-
diately.

Corollary 1. The set of uniformly inlineable policies is a subset of the set of race
free policies.

Proof. Let P be an arbitrary uniformly inlineable policy. By definition there exists
a uniformly secure and transparent inliner for P, thus by Theorem 9, P must be
race free.

An interesting question is how to decide if a policy is race free. Using Lipton’s
moverness terminology [87] we obtain the following:

Proposition 3. It is a necessary and sufficient condition for race freedom that all
pre- and post-actions occurring in different threads are right- resp. left-movers, in
the set of allowed observable traces. (I.e., if a trace T is allowed, then swapping a
pair of consecutive actions α1,α2 in different threads where α1 is a pre-action or α2
is a post-action yields an allowed trace.)

Proof. Such swappings generate the client-order preserving permutations.

In particular, if such swappings always have the same effect on the policy state,
we know the policy is race free:

Proposition 4. The following is a sufficient condition for race freedom. For any
state q1 of the security automaton corresponding to a given policy, and for any pre-
action α1 and post-action α2 with different thread identifiers, if δ(δ(q1, α1), α2) = q2
then δ(δ(q1, α2), α1) = q2.

Proof. These conditions imply the conditions from Proposition 3.

Sufficient syntactical criteria for the conditions of Proposition 4 are easily iden-
tified. For example, for the common case where the security state is a set of permis-
sions, a sufficient requirement is that pre-actions only consume permissions from
the set, and post-actions only add permissions.
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4.6.1 Relevance of non-race free policies

Are there interesting or practically relevant policies that are not race free? A policy
that is not race free imposes constraints not only on the client program, but also on
the API implementation and/or the scheduler. Hence, we argue that such policies do
not make sense. Even if an enforcement mechanism (such as an external execution
monitor) could enforce the policy, the result of the enforcement is most likely not in
line with what the policy writer intended to express. Policies impose constraints on
API method invocations because of the effects (such as writing a file, reading from
the network, activating a device, . . . ) that these API implementations have. A
policy such as the one in Figure 4.3a intends to specify that initiation of one effect
should come after the initiation of another effect. But without further information
about the API implementations and the operation of the scheduler, there is no
guarantee that enforcing this ordering on the API invocations will also enforce this
ordering on the actual effects.

In other words, the race in the policy that makes it impossible for an inliner to
enforce the policy, also makes it impossible to interpret method invocations soundly
as initiations of effects.

Hence, a policy that is not race free either indicates a bug in the policy (for
instance, the policy writer intended to specify the policy in Figure 4.3b instead of
the policy in Figure 4.3a – an easy mistake to make as in the single-threaded setting
both policies are equivalent) or it is an indication of a misunderstanding of the
policy writer (for instance the policy writer considers the start of the API method
invocation as a synonym of the start of the effect the API method implements).
Jones and Hamlen [72] make a similar observation for a different class of policies
that is hard to enforce with inlining.

As a consequence, the practicality of inlining as an enforcement mechanism is
not at stake, and detection of races in policies is useful as a technique to detect bugs
in policies.

4.7 Race free Policies are Inlineable
In this section we show that race free policies can be enforced by IRM, by giv-
ing an inlining scheme that is secure and conservative (for arbitrary programs)
and transparent (for well-synchronized programs) for race free policies. From this
point onward we restrict attention to the API semantics from Section 2.2.4 in order
to eliminate from consideration pathological virtual machines that may introduce
implementation-dependent errors or, e.g., manipulate the scheduler in non-standard
ways. For sequential Java a correct inlining scheme is already known to exist. In
this section we show that the race free policies is the maximal set of policies for
which correct inlining in well-synchronized programs is possible.

The state of the IRM might possibly be updated by several threads concurrently.
The updates to this state must therefore be protected by a global lock. A key design
choice is whether to keep holding this lock during the API call, or to temporarily
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release the lock during the call and reacquire it after the call has returned. In
the former case we say that the inliner is blocking, and in the latter we say it is
non-blocking.

The first choice (locking across calls) is easier to prove secure, as there is a strong
guarantee that the updates to the security state happen in the correct order. The
implications of this design choice was examined in [26] (Chapter 3). The problem is
that a blocking inliner can introduce deadlocks in the inlined program (even if the
target program is well-synchronized) and it is thus not transparent. Consider for
instance an API with a barrier method B that allows two threads to synchronize as
follows: When one thread calls B, the thread blocks until the other thread calls B
as well. Suppose this method is considered to be security-relevant, and the inliner,
to protect its state, acquires a global lock while performing each security-relevant
call. For a client program that consists of two threads, each calling B and then
terminating, the inliner will introduce a deadlock, as one thread blocks in B while
the other thread blocks on the global lock introduced by the inliner.

Even if it does not lead to deadlock, acquiring a global lock across a potentially
blocking method call can cause serious performance penalties. For this reason, our
algorithm releases the lock before calling an API method. In fact, our algorithm
ensures that the global lock is only held for very short periods of time.

It is worth emphasizing that the novelty in this section is not the inlining al-
gorithm itself: The algorithm is similar to existing algorithms developed in the
sequential setting and the locking strategy is relatively straightforward. The con-
tribution, rather, is the proof that the notion of race free policies gives an exact
characterization of the class of policies enforceable on multithreaded Java-like pro-
grams by a non-blocking inlining scheme.

4.7.1 Inlining Algorithm

In order to enforce a policy through inlining, it is convenient to be able to statically
decide whether a given policy clause applies to a given call instruction. Therefore
we impose the restriction on programs that they should have simple call matching,
namely that for all security-relevant methods c.m, an invokevirtual d.m call is
bound at run time to method c.m if and only if d = c. Essentially, this means that
we ignore all issues concerning inheritance and dynamic binding. These concerns
are orthogonal to the results of this paper, and it has been described elsewhere how
to deal with them [129, 1].

The inliner, IEx , takes a policy with security state definition and event rules
of the shapes (4.1) and (4.2) (see Section 4.3) and applies it to a Java bytecode
program. The inliner uses static fields si of type typei of an auxiliary class SecState
to store the shared security state, as in the ConSpec security state declaration (4.1).
(In general a unique name needs to be chosen for the security class itself, to allow the
inliner to be iteratively applied). We assume for simplicity that rules are present
for each of the three rule types before, after and exceptional, and we use
Gi,t, Ft, Fi,t, t ∈ {b, a, e} to indicate the corresponding guard and update blocks
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Inlined label Instruction Inlined label Instruction
L: lock SecState ifeq afterElse

store arguments [eval(Fm,a)]
store callee goto afterEnd

beforeG1 : [eval(G1,b)] afterElse: [eval(Fa)]
ifeq beforeG2 afterEnd: restore return value
[eval(F1,b)] unlock SecState
goto beforeEnd goto done
... excG1 : lock SecState

beforeGm: [eval(Gm,b)] store exception
ifeq beforeElse [eval(G1,e)]
[eval(Fm,b)] ifeq excG2 ,e
goto beforeEnd [eval(F1,e)]

beforeElse: [eval(Fb)] goto excEnd
beforeEnd: restore callee

...
restore arguments excGm: [eval(Gm,e)]
unlock SecState ifeq excElse

invoke: invokevirtual c.m [eval(Fm,e)]
invokeDone: lock SecState goto excEnd

store return value excElse: [eval(Fe)]
afterG1 : [eval(G1,a)] excEnd: restore exception

ifeq afterG2 unlock SecState
[eval(F1,a)] excReleased: athrow
goto afterEnd exit: iconst −1
... invokestatic System.exit

afterGm: [eval(Gm,a)] done:

Figure 4.5: The inlining replacement of L: invokevirtual c.m.

in (4.2). The compilation of guard clauses and update blocks into bytecode is well
understood and we simply assume that they are compiled into basic blocks denoted
by eval(Gi,t), eval(Ft) and eval(Fi,t) that behave as required. In particular, the
callee is extracted from the top of the stack, arguments from stack elements 1, . . . , n,
security state variables from corresponding fields of the SecState class, and the
calling thread identifier is extracted using Thread.currentThread. The inliner then
replaces each instruction L : invokevirtual c.m of arity n where c.m is security-
relevant by bytecode implementing the pseudo-code in Figure 4.5. The inliner locks
the security state by acquiring the lock associated with the SecState class, and stores
callee and arguments to the method call for use in event handler code using fresh
local variables. The security state lock is taken by executing first ldc SecState
and then entering the monitor. The use of a static class for the security state makes
it easy to determine statically that locks taken or released outside the inlined code
snippets do not affect the security state lock. The lock is released just prior to
invocation of the inlined call, and retaken after return. Each piece of event code
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From To Target Type

invoke invokeDone excG1 any
L excReleased exit any
exit done exit any

Figure 4.6: Exception handler array modifications

evaluates guards by reference to the security state and the stored arguments, and
updates the state according to the matching clause, or exits, if no matching clause is
found. Thus, if Fb (i.e. the else-clause) is absent the block at beforeEnd is replaced
by a jump to exit.

If no before rule is present, evaluation of the before guards and update clauses
is evidently not performed. Arguments and callee are still stored in local variables
and restored before the method is called, as arguments and callee may be needed
for evaluating an after or exceptional rule.

The exception handler array is modified by adding the entries in Figure 4.6
and adding done − L− 1 to all offsets above L in the original handler. Exceptions
emanating from the call to c.m are routed to the inlined handler at excG1. After
processing of exceptional events the security state is unlocked and the exception
rethrown. Exceptions caused by inlined instructions are routed to exit.

One complication is the possibility of internal exceptions. The Java Virtual Ma-
chine Specification [86] allows a JVM to throw an InternalError or UnknownError
exception at any time whatsoever. This means that when the JVM attempts to,
for instance, compile a piece of bytecode but does not have sufficient memory to
complete the operation, it can throw an internal exception instead of having to
terminate the entire program. Whereas internal exceptions are useful for JVM im-
plementers, they cause complications for the design of our inliner. Specifically, for
security, we must maintain the property that whenever no block of inlined code
is being executed, the current security state matches the trace of security-relevant
actions performed previously during the execution. If an internal exception were
to cause control to exit a block of inlined code prematurely, this property would
be violated. Therefore, we catch all exceptions that occur anywhere in the inlined
code and, when any exception is thrown by any instruction other than the security-
relevant call, we exit the program. Notice that this is secure and conservative, since
we exit at a place where the original program does not exit. But in pathological
cases (such as a JVM which chooses to randomly abort execution whenever a static
class SecState is defined) transparency may fail. For this reason we assume below
that the JVM is error-free, i.e. it never throws internal exceptions.
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4.7.2 Correctness
We first prove security, i.e. that for each program Prg and race free policy P,
T (IEx(P, Prg)) ⊆ P. The basic insight is that race freedom ensures that actions
and monitor updates are sufficiently synchronized so that security is not violated.
To see this we need to compare the observable actions of IEx(P,Prg) with the cor-
responding monitor actions, i.e. actions of the inlined code manipulating the inlined
security state. We use the notation mon(α) for the monitor action corresponding
to the observable action α. The monitor action mon(α) occurs at step i ∈ [0, n− 1]
of the execution E = C0

α0−→ · · · αn−1−−−→ Cn, if the instruction scheduled for execution
at configuration Ci is monitorexit, corresponding to one of the unlocking events
in Figure 4.5 for the action α. We refer to the points in E at which the monitor
actions occur, as monitor commit points.

Depending on which case applies we talk of the monitor action mon(α) as a
monitor pre-, normal monitor post-, or exception monitor post-action. Then the
extended trace of E, τe(E), lists all extended actions—that is, non-τ actions and
monitor actions—of E in sequence, and the monitor trace of E, τm(E), projects
from τe(E) the monitor actions only. Let β range over extended actions.

Pick now an execution E of an inlined program IEx(P,Prg), and let τe(E) =
β0, . . . , βn−1. Say that E is serial if in τe(E) there is a bijective correspondence be-
tween actions and monitor actions, and if each pre-action α is immediately preceded
by the corresponding monitor action mon(α), and each post-action α′ is immediately
succeeded by its corresponding monitor action mon(α′).

We first observe that monitor traces are just traces of the corresponding security
automaton:

Proposition 5. Let E be an execution of IEx(P,Prg). Then τm(E) ∈ P.

Proof. The locking regime ensures that all monitor actions, hence automaton state
updates, are happens-before related. Since each thread updates the automaton
state according to the transition relation, the result follows.

Lemma 8. Assume that P is race free. For any execution E of IEx(P,Prg) there
exists a serial execution E′ such that τ(E) = τ(E′).

Proof. Let E of length n be given as above. Note first that, by the happens-
before constraints, the bijective correspondence must be such that pre-actions are
preceded by their corresponding monitor actions, and vice versa for post-actions.
We construct the execution E′ by induction on the length m of the longest serial
prefix of τe(E). If n = m we are done so assume m < n. Say that βm−1 is produced
by thread t. Note first that βm−1 can be either a pre-action or a monitor post-action
as E′ is serial, and that βm can be either a post-action or a monitor pre-action. For
the latter point assume for a contradiction that βm is a pre-action. Then βm must
be produced by a thread t′ 6= t, by the control structure of the inlining algorithm,
Figure 4.5. The last action in τe(E′) by thread t′ must be a monitor pre-action
βl = mon(βm) for 0 ≤ l < m − 1 and, as each action records the tid, βk 6= βm
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for any l < k < m − 1. But then the extended trace β0, . . . , βm−1 is not serial, a
contradiction. The case where βm is a monitor post-action is similar.

Now, if βm is a post-action, say, then thread t is at one of the control points
invokeDone or excG1 . Either mon(βm) = βm′ for some m′ > m or else thread t
does not produce any extended actions in τe(E′) after m. In the latter case it is
possible to schedule mon(βm) directly, as the guards for post-actions are exhaustive.
In the former case we need to also argue that all extended actions βk for m ≤ k
and k 6= m′ remain schedulable, even after scheduling mon(βm) right after βm. But
this follows from the left-moverness of monitor post-actions with respect to both
monitor actions, Proposition 3, and non-monitor actions on different threads.

If on the other hand βm is a monitor pre-action mon(α). If βm+1 = α we are
done. Otherwise βm+1 is a monitor action or non-monitor action of another thread,
and regardless which, by rescheduling, βm can be moved right until it is left adjacent
to α. But this case can only apply a finite number of times at the end of which E′
can be extended. This completes the proof.

Inliner security is now an easy consequence.

Theorem 10 (Inliner Security). If P is race free then IEx is secure, i.e. T (IEx(P,
Prg)) ⊆ P.

Proof. Pick any execution E of IEx(P,Prg). Use Lemma 8 to convert E to an
execution E′ with the property that τ(E) = τ(E′) = τm(E′) ∈ P by Proposition 5
and since E′ is serial.

For conservativity, our proof is based on the observation that there is a strong
correspondence between executions of an inlined program, and executions of the
underlying program before inlining: An execution of the original program can be
obtained by removing all transitions which are due to inlined instructions, all local
variables and mappings in the heap that are due to inlined code and all mappings
in the lock map which are due to inlined acquierings of the security state lock.

Theorem 11. IEx is conservative, i.e. T (IEx(P,Prg)) ⊆ T (Prg).

Proof. Given an execution E = C0 . . . (Ck) of IEx(P,Prg) we show that there exists
an execution E′ = C ′0 . . . (C ′l) of Prg such that ω(E) = ω(E′). We do this by
showing that IEx(P,Prg) simulates Prg in a way such that all observable actions
are preserved. The simulation relation is defined over configurations as follows:
(h,Λ,Θ) ∼ (h′,Λ′,Θ′) if

1. h′(SecState.f ) = ⊥ for each field f in SecState and h′(x) = h(x) otherwise.

2. Λ′(SecState.class) = ⊥ and Λ′(tid) = Λ(tid) otherwise.

3. dom(Θ′) = dom(Θ) and for each tid ∈ dom(Θ′) there is a one-to-one mapping
of activation records between Θ′(tid) and Θ(tid) such that for each activa-
tion record (M ′, pc′, s′, l′) ∈ Θ′(tid) there is a corresponding activation record
(M, pc, s, l) ∈ Θ(tid) such that
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a) M = M ′,
b) pc′ equals L if pc points at an instruction in range [L, done) in Figure 4.5,

and pc otherwise,
c) s′ equals s with any values pushed by inlined instructions removed, and
d) l′ equals l with any variables introduced by inlined code removed.

First we note that C0 ∼ C ′0 (trivial check). We now show that

1. if Ca
α→ Cb and Ca ∼ C ′c for some C ′c then there exists a C ′d such that C ′c →∗ C ′d

and such that Cb ∼ C ′d, and

2. the simulated transitions (C ′c →∗ C ′d) emits the same observable action (α) as
the original transition

as depicted below:

IEx(P,Prg) Prg

Ca

Cb

C ′c

C ′d

∗

∼

∼

α α

Assume Ca
α→ Cb and Ca ∼ C ′c for some C ′c. If Ca

α→ Cb represents an execution
of an inlined instruction (if the program counter of Ca points at an instruction in
range (L, done) of the code in Figure 4.5) we let C ′d = C ′c. This is valid because
no inlined instruction affects any non-inlined variables, and because the program
counter of Cb maps back to the same program counter as C ′c (thus C ′c ∼ Cb) and
because no inlined instruction emits an observable action (thus α = τ). If Ca → Cb
is due to an instruction of the original program, then there exists a C ′d such that
C ′c

α→ C ′d and such that Cb ∼ C ′d since both Ca and C ′c refers to the same instruction
and since no non-inlined instruction relies on the state of any variables added by
the inliner.

We have now shown that each execution of the inlined program E has a cor-
responding execution of the original program E′ such that ω(E) = ω(E′) i.e. the
inliner conservative.

For transparency we need to show the opposite: That each execution of the
original program has a corresponding execution of the inlined program. This is a
slightly more delicate task due to the relaxed memory consistency model. As de-
scribed in Section 3.5.1, some executions of ill-synchronized programs can exhibit
traces which are possible only due to certain instruction reorderings. While such in-
struction reorderings may be allowed by the memory model in the original program,
it may not be allowed in the inlined program due to the added synchronization ac-
tions (monitorenter and monitorexit). For this reason, we restrict attention to
well-synchronized programs in the theorem below.
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Theorem 12. The inliner IEx is transparent for well-synchronized programs, i.e.
T (Prg) ∩ P ⊆ T (I(Prg,P)) for any well-synchronized program Prg.

Proof. We show that for each policy adherent execution of the original program
E = C0 . . . (Ck) there is an execution E′ = C ′0 . . . (C ′l) (with the same trace) of the
inlined program. We do this by showing that each transition of E can be simulated
by one or more transitions in E′. Let ∼ be a relation over configurations defined as
follows: (h,Λ,Θ) ∼ (h′,Λ′,Θ′) if

1. h and h′ agrees on all non-inlined variables

2. Λ = Λ′

3. dom(Θ′) = dom(Θ) and each activation record in Θ equals the corresponding
activation record in Θ′ with the pc offset to the closest preceding non-inlined
instruction and the local variables added by the inliner removed.

We note that C0 ∼ C ′0 (trivial check) and show the following:

1. If Ca
α→ Cb and Ca ∼ C ′c for some C ′c, then there exists a C ′d such that

C ′c →∗ C ′d and such that Cb ∼ C ′d, and

2. the simulated transitions (C ′c →∗ C ′d) emits the same observable action (α) as
the original transition.

Assume Ca
α→ Cb and Ca ∼ C ′c for some C ′c.

If Ca
α→ Cb invokes a security relevant method c.m, we let C ′c →∗ C ′d represent

the transitions of the inlined program corresponding to the before clauses of c.m
followed by the same invoke transition as the original program. By the fact E
adheres to P we know that the transitions will not halt the execution, and by the
fact that no inlined instruction emits any observable actions, the only observable
action of C ′c →∗ C ′d will due to the last invoke which will emit the same observable
action, α, as the original transition. By the fact that each block of inlined code
starts by acquiring the lock of the SecState class and ends by releasing it, we know
that no thread holds the lock in C ′c and that the lock maps are equal in Cb and C ′d.
The crucial part is now to show the remaining constraints for Cb ∼ C ′d, i.e. that
the state of all non-inlined variables agrees in Cb and C ′d. We first note that no
inlined instruction affects the state of a variable of the original program. We now
turn to the issue of potential instruction reordering of the original program. By the
fact that Prg is well-synchronized the Java Memory Model guarantees that E will
appear to be sequentially consistent ([59] Section 17.4.3). This implies that there is
a total order of the actions in E which is consistent with the program order of Prg.
This in turn guarantees that no instruction reorderings affects the execution. This
is all we need to guarantee that C ′d can be chosen in a way such that Cb ∼ C ′d.

Similarly, if Ca
α→ Cb returns (normally or exceptionally) from a security relevant

method c.m, we let C ′c →∗ C ′d represent same return transition followed by the a
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sequence of transitions corresponding to the execution of the instructions which
have been inlined for the after or exceptional clauses of c.m. By the same reasoning
as above, we know that C ′c →∗ C ′d emits the same observable action, α, as the
original transition and that Cb ∼ C ′d.

If Ca
α→ Cb represents any other transition we know, by Ca ∼ C ′c that C ′c

α→ C ′d,
and that Cb ∼ C ′d.

We have thus shown that each execution E of Prg has a corresponding execution
E′ of IEx(P,Prg) such that ω(E) = ω(E′) which implies that IEx is transparent.

Corollary 2. The set of race free policies is the maximal set of inlineable policies.

Proof. Since IEx is secure, and conservative (for arbitrary programs) and transpar-
ent (for well-synchronized programs) for all race free policies, we know that any race
free policies is by definition inlineable. The result then follows from Corollary 1.

4.8 Case Studies

We have implemented an inliner that parses policies written in ConSpec and per-
forms inlining according to the algorithm described in Section 4.7.1. This inliner
has been evaluated in five case studies of varying characteristics. Case study de-
scriptions and results are provided below. For detailed descriptions and case study
applications and policies, we refer to the web page [88].

4.8.1 Case Study 1: Session Management

It is common for web applications to allow users to login from one network and then
access the web page using the same session ID but with a different IP address from
another network. Provided that the session ID is kept secret this poses no security
problems. However, the session can be hijacked due to for instance predictable
session IDs, session sniffing or cross-site scripting attacks [100].

In this case study we examine a simple online banking application implemented
using the Winstone Servlet Container and the HyperSQL DBMS. Users may login
though an HTML form, transfer money and logout. The session management is
handled by the classes provided by the standard Servlet API.

To eliminate one source of session hijacking attacks the policy in this case study
forbids a session ID from being used from multiple IP addresses. It does this by a)
associating every fresh session ID with the IP address performing the request, and
b) rejecting requests referring a known session ID performed from IP addresses not
equal to the associated one.

The policy is implemented using a hash map for storing the IP to session ID
association, and monitors (and restricts) all invocations of the HttpServlet.service
method.
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4.8.2 Case Study 2: HTTP Authentication

In this case study we look at the HTTP authentication mechanism [50]. This allows
a user to provide credentials as part of an HTTP request. On top of this the Servlet
API provides a security framework based on user roles. The access control of this
setup is on the level of HTTP-commands, such as GET and POST. This is however
too coarse-grained for some applications.

The application in this case study is the same as in the previous case study,
but here we focus on the administration interface of the web application. This
part is protected by HTTP authentication and supports two roles: Secretaries and
administrators. The intention is that secretaries should be allowed to query the
database whereas administrators are allowed to also update the database.

The policy enforces this by making sure the application calls HttpServletRequest.
isUserInRole and that only users in the secretary role may invoke java.sql.Statement.
executeQuery and only users in the administrator role may invoke java.sql.Statement.
executeUpdate. Since these rules only apply for the administrative part of the web
application the policy is implemented to check requests only if request.getRequest−
URI ().startsWith(”/admin”) returns true. Furthermore, to prevent interference of
multiple simultaneous requests, the policy state is stored in ThreadLocal variables.

4.8.3 Case Study 3: Browser Redirection

Following the example of Sridhar and Hamlen [118] we examined an ad applet that,
when being clicked on, redirects the browser to a new URL. The policy in this case
states that the applet is only allowed to redirect the browser to URLs within the
same domain as which the applet was loaded from.

The policy enforces this by asserting that URLs passed to AppletContext.show−
Document have the same host as the host returned by Applet.getDocumentBase().

4.8.4 Case Study 4: Cash Desk System

In this case study we monitor the behavior of a concurrent model of a cash desk
system. The application stems from an ABS model that was developed for the
HATS project [16]. The policy keeps track of the number of sales in progress (by
monitoring invocations of newSaleStarted() and saleFinished()) and asserts that the
number of ongoing sales is positive.

4.8.5 Case Study 5: Swing API Usage

The classes in the Java Swing API are not thread safe and once the user interface
has been realized (Window.show(), Window.pack() or Window.setVisible(true) has
been called) the classes may be accessed only through the event dispatch thread
(EDT). This constraint is sometimes tricky to adhere to as it is hard to foresee all
flows of a program and whether or not some code will be executed on the EDT or
not.
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CS1 (Sessions) 1 532.7 533.1 0.08 1 2.47 0.44
CS2 (HTTP Auth.) 4 532.7 535.6 0.54 12 2.66 0.87
CS3 (Redirection) 2 27.5 28.2 2.41 1 0.18 n/a
CS4 (Cash Desk) 2 652.9 654.0 0.17 2 2.52 n/a
CS5 (Swing) 249 1888.6 2140.7 13.35 1038 26.68 11.27

Table 4.1: Quantative results of the case studies.

In this case study we monitor the usage of the Swing API in a large (68 kloc),
off-the-shelf, drawing program called JPicEdt (version 1.4.1_03) [102]. The inlined
monitor has two states: realized and not realized and the policy states that once
realized, a Swing method may only be called if EventQueue.isDispatchThread()
return true.

This case study demonstrates how the inliner can be useful, not only in a security
critical setting, but also during testing and development. The inlined reference
monitor revealed three violations of the policy and by letting the monitor print the
stack trace upon a violation we managed to locate and patch the errors.

4.8.6 Results

A summary of the case studies is given in Table 4.1. Benchmarks were performed
on a computer with a 1.8 GHz dual core CPU and 2 GB memory. The runtime
overhead due to inlining was measured for the web application case studies (CS1
and CS2) and for the Swing case study (CS 5). The runtime overhead for the web
application was based on a roughly one minute long stress test and for the Swing
application we measured the startup time (the time required to construct the user
interface).

4.9 Certification

Monitoring is essentially a tool for quality assurance: By monitoring program exe-
cution we are able to observe actions taken by a program and intervene if a state
of affairs is discovered which we for some reason are unhappy with. By inlining we
can make this tool available for developers as well, for instance to enforce richer,
history-dependent access control than what is allowed in the current, static sand-
boxing regime.
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However, the code consumer may not necessarily trust the developer (code pro-
ducer) to enforce the consumer’s security policy. Moreover, different consumers may
want to enforce different security policies. In this section we turn to the issue of
certification, that is, we ask for an algorithm, a checker, by which the recipient of a
piece of code can convince herself that the application is secure. To support efficient
verification, the code producer can ship additional metadata with the code, for in-
stance (elements of) a proof, following the idea of Proof-Carrying Code (PCC) [95].
This metadata will be called a certificate, not to be confused with the concept with
the same name used in public-key cryptography.

The scenario we want to support is the following (a classic PCC scenario):

1. A code producer develops an application, and ensures that it complies with
the producer policy by inlining a corresponding monitor. This producer policy
is developed with the intention that it will cover all the security concerns of
potential consumers of the application, but of course these consumers do not
necessarily trust the producer for this.

2. Various code consumers want to run the application. Before doing so, each
consumer will check that the code complies with his or her consumer policy.
(Each consumer may have a different policy.)

3. In order to help a consumer with this check, the producer ships a certificate
together with the code. The certificate will contain a proof of the fact that
the code complies with the producer policy.

4. The code consumer uses a checking algorithm which checks if the applica-
tion complies with his consumer policy. This checking algorithm takes as
(untrusted) input the application code and the certificate.

We outline an approach for building a checker that can verify the security prop-
erty of IRMs inlined using techniques similar to the algorithm we discussed in this
paper. The contribution of this section is that we show that, for this inlining ap-
proach, a checker for multithreaded Java programs can be built using established
program verification techniques based on sequential Java.

4.9.1 Assumptions about the inlined code
The checking algorithm in this section is designed for a class of inliners that (1) are
non-blocking, i.e. they do not lock the security state across security relevant API
calls, and (2) use one global lock to protect the inlined security state.

More concretely, let us assume that the security state is kept in static fields of
a designated SecState class, and that the SecState class object is used to lock the
security state. The actual inlined code then operates in phases:

1. A neutral phase (N), where the SecState lock is not held. If all threads are
in this N state, then the inlined security state is in sync with the history of
security relevant actions encountered so far.
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2. A locked before phase (LB), where the inliner is updating its state in antici-
pation of an upcoming security relevant call.

3. An unlocked before phase (UB), where things might be happening between the
inlined check and the actual call. The inlined security state has been updated
already, but the actual security relevant action has not yet happened.

4. A calling phase (C) where the actual security relevant call is executing.

5. An unlocked after phase (UA), where things might be happening between the
(normal) return of the call, and the inlined security state update.

6. A locked after phase (LA), where the inliner is updating its state in response
to a successfully returned security relevant call.

7. Similar unlocked exceptional and locked exceptional phases, to deal with ex-
ceptional returns of the security relevant method invocation. These are similar
to the UA and LA phases, and we do not discuss them further in this sec-
tion. Extending the results in this section to deal with exceptional returns of
security relevant calls is straightforward.

Notice that, with the inliner of Figure 4.5, it appears that no instructions are actu-
ally executed during the UB and UA phases. This is, however, not entirely accurate:
When the inliner is applied iteratively, say twice in succession, the instructions ex-
ecuted in the locked phases of the second inlining will appear as instructions in
the unlocked phases for the first inlining. In fact, we can allow arbitrary code to
be present in the unlocked phases, as long as it does not interfere with the inlined
state. This allows a wider class of inliners to be supported than the one introduced
above. One such example is briefly discussed in the conclusions.

A key part of the checking algorithm is to recognize these phases. Once the
phases are recognized, an approach similar to the one taken in [1] for sequential
Java can be enacted.

To assist the checker in identifying the phases, the certificate contains the fol-
lowing information: For each bytecode instruction in the program that performs a
security relevant method invocation, the code producer should include in the cer-
tificate a tuple (c′.m′, Llb, Lub, Lcall, Lla, Ln), where c′.m′ is the name of the method
containing the call, and the other elements of the tuple are labels in the method
body of c′.m′:

• Llb indicates where the LB phase starts,

• Lub indicates where the LB phase ends and the UB phase starts,

• Lcall indicates where the calling phase C starts and ends. Recall that in our
semantics, API calls happen in two steps. The first step initiates the calling
phase, and the second step ends it, and starts the UA phase.
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• Lla indicates where the UA phase ends and the LA phase starts.

• Finally, Ln indicates where the LA phase ends and the inliner returns to the
neutral phase.

A first part of the checking algorithm verifies, based on the above information,
whether the code complies with the assumptions we make about the inlining process.
The example inliner IEx that we proposed in Section 4.7 will pass this check.

Check 1. For each tuple, (c′.m′, Llb, Lub, Lcall, Lla, Ln), in the certificate, perform
the following checks:

• The Llb and Lla labels point to a ldc SecState instruction, followed by a
monitorenter.

• The Lub and Ln labels point to a monitorexit instruction preceded by a ldc
SecState.

• The labels Llb, Lub, Lcall, Lla, Ln occur in this order in the method body of
c′.m′.

• Construct the control-flow-graph (CFG) for the method body of c′.m′, and
check that:

– The only way to enter the block between Llb and Ln is by entering through
Llb. (No jumps over blocks of inlined code or into the middle of inlined
code)

– Each path in the CFG that passes through Llb also passes through Lub,
Lcall, Lla, and Ln, or leads to System.exit().

In addition, to make sure that the global security state (stored in static fields of the
SecState class) is only accessed under the SecState lock, perform the following
checks:

• No other ldc SecState instructions occur anywhere in the program. This
makes sure the SecState class object is only used for acquiring or releasing a
lock, and no other aliases to the object are created.

• putstatic and getstatic for fields of the SecState class only occur between
Llb and Lub, and between Lla and Ln labels.

These checks allow us to reason about the actual inlined security state sequen-
tially (because all accesses to that state happen under a single lock). Moreover, any
invariant on the security state that is true in the initial state and maintained by
each block of code that holds the SecState lock will be true at each program point
where the SecState lock is not held.
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These two observations will be crucial in designing the second step of the checker.
For this second step, the checker will inline a reference automaton used for verifica-
tion purposes, henceforth referred to as a “ghost reference monitor”, or ghost IRM
for short. We first describe this ghost IRM and how it is inlined by the checker.

4.9.2 The Ghost Reference Monitor
The ghost IRM is implemented by inserting special purpose assignments called ghost
instructions into the program. The ghost instructions are essentially ConSpec rules,
lightly compiled to evaluate guards and updates using the JVM stack and heap,
together with a set of auxiliary ghost variables used to represent the state of the
ghost IRM, and to store intermediate values, e.g. across method calls. Programs
containing ghost instructions are called augmented programs.

A ghost instruction has the shape

〈xg := a1 → e1 | . . . | an → en〉

where xg is a vector of ghost variables, ai are guard assertions and ei are expression
vectors of the same type and dimension as xg. The instruction assigns the first
expression whose guard holds, to the left hand side variable, similar to the way
ConSpec rules are evaluated. If no guards hold, the instruction fails and the exe-
cution is said to be incorrect. The guards ai and expressions ei may refer to ghost
variables, actual variables, the stack, and they may extract callee and thread id as
described above.

Example 7. The ghost instruction below could be used to express that an execution
is incorrect if the invoke instruction is executed with true as argument more than
10 times.

. . .
〈xg := s0 ∧ xg < 10→ xg + 1 | ¬s0 → xg〉
invoke c.m
. . .

Ghost variables can be global or local. This scope will be notationally clarified
by the superscripts xg and xgl , respectively.

An execution of an augmented program is a sequence of augmented configu-
rations which in turn are regular configurations augmented with a ghost variable
valuation. An augmented program is said to be correct if all of its executions are
correct.

4.9.3 Ghost Inlining
The ghost inliner augments clients with ghost instructions to maintain various types
of state information. This includes the ghost IRM state, intermediate data used only
by the ghost IRM, and information to assist the checker in relating the ghost IRM
state and the actual IRM state.
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Identifier Purpose
msg A global vector representing the ghost security state, i.e. a type

correct assignment to the security state variables as in Section 4.3.

statusgl A local variable ranging over ready, meaning that the action trace is
in sync with the ghost IRM, or before_c.m, return_c.m, indicating
that the ghost IRM is one pre- or post-action out of sync.

arggl , ogl ,
tidgl , rgl

Local variables to hold the arguments of security relevant calls during
the call (they may be referenced in an after-clause), resp. calling
thread, callee, and return value.

Table 4.2: Variables introduced by ghost inliner.

The code consumer will perform the ghost inlining algorithm, using the following
inputs:

• The consumer policy, from which the ghost IRM state, and the implementation
of the ghost IRM state transitions can be computed.

• The code and the certificate.

The ghost inliner introduces the variables listed in Table 4.2, and it implements
the ghost IRM by inserting blocks of ghost instructions according to the following
scheme. For each (c′.m′, Llb, Lub, Lcall, Lla, Ln) tuple in the certificate for a call to
security relevant method c.m, do the following:

1. Insert in c′.m′ before label Lub − 1:

〈tidgl := Thread.currentThread()〉
〈ogl := s0〉
〈arggl := (s1, . . . , sn)〉
〈msg := statusg = ready→ δ((tidgl , c.m, ogl , arggl)↑)〉
〈statusgl := beforec.m〉

If c.m is security relevant but lacks a before clause, the ghost security state
msg is not updated, but the other assignments are still performed.

2. Insert in c′.m′ before label Lcall:

〈statusgl := statusgl = beforec.m
∧ ogl = s0 ∧ arggl = (s1, . . . , sn)→ ready〉
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Arbitrary non-inlined code
Llb: ldc SecState

monitorenter
Actual IRM BEFORE code
〈arggl := (s1, . . . , sn)〉
〈msg := statusgl = ready→ δ((tidgl , c.m, ogl , arggl)↑)〉
〈statusgl := before_c.m〉
ldc SecState

Lub: monitorexit
Arbitrary code
〈statusgl := statusgl = before_c.m ∧ arggl = (s1, . . . , sn)→ ready〉

Lcall: invokevirtual c.m
〈rgl := s0〉
〈statusgl := statusgl = ready→ return_c.m〉
Arbitrary code

Lla: ldc SecState
monitorenter
Actual IRM AFTER code
〈msg := statusgl = return_c.m→ δ((tidgl , c.m, ogl , arggl , rgl)↓)〉
〈statusgl := ready〉
ldc SecState

Ln: monitorexit
Arbitrary non-inlined code

Figure 4.7: Schematic summary of ghost inlining for invokevirtual c.m. Current
thread tid and callee s0 has been omitted for brevity.

3. Insert in c′.m′ after label Lcall:

〈rgl := s0〉
〈statusgl := statusgl = ready→ returnc.m〉

4. Insert in c′.m′ before label Ln − 1:

〈msg := statusgl = returnc.m → δ((tidgl , c.m, ogl , arggl , rgl)↓)〉
〈statusgl := ready〉

We refer to ghost instruction blocks inserted according to condition i above as a
block of type i.

A schematic summary of the treatment of a security relevant invoke is illustrated
in Figure 4.7. Correctness is proved by an extension of the inliner security argument
of Section 4.7. In analogy with Proposition 5 we first show that the ghost inliner is
sound in the sense that traces of the ghost monitor are allowed by the policy, and
we then show security through a serialization property similar to Lemma 8.



102
CHAPTER 4. SECURITY MONITOR INLINING AND CERTIFICATION FOR

MULTITHREADED JAVA

Let Ig(P,Prg) be the result of ghost inlining Prg with respect to policy P and
Prg’s certificate. Similar to Section 4.7 we compare the observable actions of Prg
with ghost actions αg of Ig(P,Prg). The ghost extended trace of an execution E,
τge(E) is the sequence of observable actions and ghost actions of E, and the ghost
trace of E, τg(E), projects from τge(E) the ghost actions only.

Proposition 6. Let E be a legal execution of Ig(P,Prg). Then τg(E) ∈ P.

Proof. Let τg(E) = α0
g · · ·αn

g be the ghost trace of E. In the context of E, say
that a block of type 1 justifies a block of type 2 or 4, if the values assigned to ghost
variables ogl , arggl in the type 1 block are the values used in the block of type 2 or
4. For the case of a type 2 block the value of statusgl also needs to match the value
assigned in the type 1 block. Similarly say that a block of type 4 confirms a block
of type 3, if the values assigned to rgl , statusgl in the type 3 block are those used in
the type 4 block.

If αn is a pre-action then a block of type 1 justifying αn
g happens before αn

g

and after αn−1
g. Since the prefix of τg(E) not including αn

g is in P, so is τg(E).
For this argument to work out we need to observe that, if αn−1

g is a block of type
3 then that block is confirmed by a block of type 4 before control is transferred to
the block of type 1 justifying αn

g. The case of αn a post-action is virtually identical
and left to the reader.

With Proposition 6 in place the security proof is essentially complete, as the
proof of serialization can follow that of Lemma 8 line for line.

As a result we obtain the correlate of the Inliner Security Theorem, now trans-
ferred to the ghost inliner:

Theorem 13 (Ghost Security). If P is race free, and Prg is a correct program,
then T (Ig(P,Prg)) ⊆ P

4.9.4 The checker

The checker algorithm should check that a given program (with certificate) satisfies
a code consumer policy. To achieve this, the checker first performs Check 1 from
Section 4.9.1. Then the checker augments a ghost IRM based on the consumer
policy. Building on Theorem 13, the only remaining thing the checker needs to do
is verify that the resulting program is correct, i.e. that none of the inlined ghost
instructions fail.

Checking that an arbitrary program with inlined ghost instructions is correct
is a hard problem, as hard as verifying full functional correctness of multithreaded
Java code. However, with the assumptions we made about the actual inlining
process, and given the concrete ghost inlining algorithm, checking correctness can
be substantially simplified. In particular, we show in this section that verification
of correctness can be done using sequential reasoning only. We assume that we are
given as an oracle a proof checker for a standard sequential bytecode program logic
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(for instance the logic proposed by Bannwart and Müller [4]). In order to ensure
that sequential verification is sound in our multithreaded setting, we rewrite the
bytecode before sending it to the sequential verifier. In a multithreaded setting,
reads from the heap are not necessarily stable. The only two parts of the state
that we can reason about sequentially are local variables and the global security
state (while the SecState lock is being held). We encode this by replacing all other
reads from the heap by method calls to a method randomValue() of appropriate
return type. This ensures that the verifier knows nothing about values read from
the heap. Whenever we send blocks of bytecode (and corresponding proofs) to
the verification oracle, we preprocess these blocks of bytecode to (1) remove all the
locking/unlocking instructions, and (2) to replace reads from the heap (except reads
of the fields of SecState in the LB or LA phase) with calls to such a randomValue()
method of the appropriate type.

To support this second part of the checking algorithm, the code producer should
include additional information in the certificate.

First, the code producer should provide an invariant I(ms,msg) that relates
the actual inlined security state ms to the ghost inlined security state msg. This
invariant can be through of as a simulation relation between the states of the actual
security automaton and the ghost automaton. Obviously, I(ms,msg) is only allowed
to refer to ghost security state variables and to static fields of the SecState class.

Second, the certificate provided by the code producer should contain some proofs
checkable by the sequential program verification oracle, as detailed below.

Check 2. For each tuple (c′.m′, Llb, Lub, Lcall, Lla, Ln) in the certificate for a secu-
rity relevant call to c.m, the checker performs the following verifications:

• For the locked before block B (the code between the acquiring of the SecState
lock at Llb and releasing of that lock at Lub), check that the certificate contains
a valid proof that the following code:

〈msg := δ((tidgl , c.m, s0, (s1, . . . , sn))↑)〉;B

maintains the invariant I(ms,msg), and does not fail when started from a
state where this invariant is true.

• For the full inlined block F (the code between the acquiring of the SecState lock
at Lla and releasing of that lock at Ln), check that the certificate contains a
valid proof that F maintains the invariant I(ms,msg), and does not fail when
started from a state where this invariant is true.

Finally, check that I(ms,msg) holds for the default initial values for all ghost and
actual security state variables.

Lemma 9. If a program passes the checker, then, in any execution of the program,
the invariant I(ms,msg) holds whenever the SecState lock is not being held by any
thread.
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Proof. By contradiction. Assume there is an execution that violates this property.
Identify the first step in the execution where the property fails. This cannot be the
first step of the execution, as Check 2 checks that I(ms,msg) holds in the initial
state. Since changes to the variables mentioned in the invariant can only be done
under the SecState lock (Check 1), the first step where the property fails must be
a step where the SecState lock is being released. Because of Check 1, the lock can
only be released by an instruction that is labeled Lub or Ln. Let us consider the
case Ln (the other case is similar), and let us call the thread that performs this
monitorexit t. Select from the execution all steps from the thread t. Since t reaches
Ln, and because of the control flow checks in Check 1, one of these execution steps
must execute the instruction at Llb. Consider the last step of thread t that executes
the instruction at Llb, and remove from the execution all steps before that one. The
resulting execution is a single-threaded execution of the full inlined block F verified
in Check 2 to maintain the invariant. Moreover, the execution starts in a state
where the invariant holds (because we have selected the first step in the execution
where the property fails). If our sequential verification oracle is sound, this cannot
happen.

We can now show that the checker is secure: if all the checks succeed, the
program being checked is secure.

Theorem 14. A program that passes the checker is secure.

Proof. By Theorem 13 it suffices to prove that the ghost inlined program can never
fail. We prove this by contradiction. Assume there is an execution of the program
that fails, i.e. that leads to one of the guards in the ghost statements evaluating to
false. We show that from this execution, we can construct a failing single-threaded
execution of one of the blocks of code that have been verified not to fail by the
sequential verification oracle.

Let the thread identifier of the thread where the failure happens be t.
Consider all steps of thread t leading to the failure of a ghost statement. Because

of the CFG check in Check 1, and since thread t reaches one of the ghost inlined
instructions, thread t must have executed the instruction at label Llb. Select the
latest execution by thread t of that instruction, and remove all steps before that
step. The remaining execution is a single threaded execution of the full inlined
block verified not to fail during Check 2. Contradiction.

4.9.5 Creating certificates for the example inliner

Finally, we show that a code producer that uses the concrete inliner IEx that we
proposed in Section 4.7 can easily produce a certificate that the resulting program
complies with the inlined policy. Certificates contain three parts:

• For each security relevant invokevirtual bytecode instruction at a label Lcall
in method c′.m′, a certificate contains the tuple (c′.m′, Llb, Lub, Lcall, Lla, Ln)
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marking the beginning and ending of the different phases of the inliner. Com-
puting these for IEx is trivial.

• An invariant I(ms,msg) that relates ghost security state to actual security
state. To certify that an inlined program complies with the inlined policy,
this invariant is just the identity.

• For each security relevant invokevirtual bytecode instruction, the certificate
contains two sequential correctness proofs, one for the locked before block B,
and one for the full inlined block F . It is an easy exercise to verify that the
code blocks produced by our inliner are valid. Given an oracle for constructing
proofs of valid programs in sequential Java, we can complete the certificate
with this third part.

Theorem 15. A program inlined with our inliner and with a certificate constructed
as above will pass the checker.

To summarize, we have shown that our inliner is able to inline a reference moni-
tor in a way such that it is statically decidable whether or not the resulting program
adheres to the given (race free) policy. This is what Hamlen et al refers to as P-
verifiability [120]. Thus, put another way, we have shown that the set of race free
policies are P-verifiable.

4.9.6 Discussion

The checker developed in this section is, to the best of our knowledge, the first one
that can certify compliance with security automata for multithreaded Java byte-
code. The certification approaches proposed by other authors (and discussed in
Section 4.1.1) focus on sequential programs only, or on blocking inliners for multi-
threaded programs. While our checker can only handle programs that have been
generated by an inliner that complies with the assumptions we outlined in Sec-
tion 4.9.1 (it will reject any other program as possibly insecure), this is a significant
step forward. However, further improvements are possible.

Most importantly, one of the key motivations for Proof-Carrying Code is that it
can reduce the Trusted Computing Base (TCB). Security only relies on correctness
of the verifier, not on the (possibly complicated) techniques used by the code pro-
ducer to construct the code and the proof. In many PCC approaches, the verifier is
just a proof checker for proofs in a simple program logic. The checker we proposed
in this paper is significantly more complicated than that. The main reason for this is
that there is no existing program logic for multithreaded Java bytecode. Designing
such program logics (and proving them sound) is an important avenue for future
work.

What we did show in this section is how, for the class of inliners that we support,
the issues related to multithreading can be handled separately using a relatively
simple syntactic check (Check 1). Given a suitable program logic, it is likely that
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the insight reported in this section could be used to construct security proofs in
that logic for programs that are inlined with such an inliner. Then, security could
be verified using just a proof checker for a program logic.

Even though we have not yet reached that stage, our checker is still significantly
simpler than the inliner: ghost inlining is done at a higher level of abstraction,
and avoids many of the intricate bytecode rewriting tasks that the real inliner has
to deal with, including things such as updating jumps, recomputing switch tables,
updating exception handling tables, and so forth.

4.10 Conclusions and Future Work
Inlining is a powerful and practical technique to enforce security policies. Sev-
eral inlining implementations exist, also for multithreaded programs. The study of
correctness and security of inlining algorithms is important, and has received a sub-
stantial amount of attention the past few years. But, these efforts have focused on
inlining in a sequential setting. This paper shows that inlining in a multithreaded
setting brings a number of additional challenges. Not all policies can be enforced
by inlining in a manner which is both secure and transparent. Fortunately, these
non-enforceable policies do not appear very important in practice: They are policies
that constrain not just the program, but also the API or the scheduler. We have
identified a class of so-called race free policies which characterizes exactly those
policies that can be enforced by inlining in a secure and transparent fashion on
multithreaded Java bytecode. This result is quite general: It relies mainly on the
ability of policies to distinguish between entries to and exits from some set of API
procedures, and very little on the specificities of the Java threading model. We
have shown that the approach is useful in practice by applying it in several realistic
application scenarios, and we have shown how certification of inlining in the mul-
tithreaded setting can be reduced to standard verification condition checking for
sequential Java.

A number of extensions of this work merit attention. We discuss three issues:
Inheritance, iterated inlining, and callbacks.

Inheritance, first, is relatively straightforward: In order to evaluate the correct
event clause, runtime checks on the type of the callee object would be interleaved
with the checks of the guards. This is spelled out for the sequential setting in [129]
for C#. We do not expect any issues to carry this over to the multithreaded setting.

For iterated inlining there are two options:

1. The ConSpec policies are merged before inlining. This can be achieved by
using a syntactic cross product construction for policies, I(Prg,∏i Pi).

2. Alternatively, the monitors can be nested by inlining one policy at a time:
I(. . . I(I(Prg,P1),P2), . . .Pn).

If the example inliner, IEx , is used, the certification approach described above is
general enough to easily certify the fully inlined program from certificates for each
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policy Pi by itself. If a different inliner is used however, the second approach needs
a different treatment in general. One common strategy, for instance, is to create
a wrapper method for each security relevant method, place the policy code in the
wrapper method and replace the security relevant calls, with calls to the wrapper
methods. The reason for this is that, except for the last inlining step, the inlined
policy code will no longer reside in the same method as the security relevant call.
To handle this one can either:

• Do the analysis from the first inlined before-instruction, to the last inlined
after / exceptional instruction globally. (This is obviously not tractable
in general, but for simple wrapper methods it would not pose any problems.)

• Perform a simple renaming of security relevant methods, so that the outer
policies consider the new wrapper methods to be security relevant instead.

Callbacks can be accommodated as well, but with more significant changes.
First, the notion of event must be changed, to include not only calls from the client
program to the API and return, but also from the API to the client program. This
affects not only the program model but also the policy language. The negative
results will remain valid, but the inlining algorithm must be amended to inline pre-
and post checks in each public client method.

Finally, we believe that our study of the impact of multithreading on program
rewriting in the context of monitor inlining is a first step towards a formal treat-
ment of more general aspect implementation techniques in a multithreaded setting.
Indeed, our policy language is a domain-specific aspect language, and our inliner is
a simple aspect weaver.
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Abstract

Current approaches to security policy monitoring are based on linear con-
trol flow constraints such as runQuery may be evaluated only after sanitize.
However, realistic security policies must be able to conveniently capture data
flow constraints as well. An example is a policy stating that arguments to the
function runQuery must be either constants, outputs of a function sanitize,
or concatenations of any such values.

We present a novel approach to security policy monitoring that uses tree
automata to capture constraints on the way data is processed along an execu-
tion. We present a λ-calculus based model of the framework, investigate some
of the models meta-properties, and show how it can be implemented using la-
bels corresponding to automaton states to reflect the computational histories
of each data item. We show how a standard denotational semantics induces
the expected monitoring regime on a simple “while” language. Finally we im-
plement the framework for the Dalvik VM using TaintDroid as the underlying
data flow tracking mechanism, and evaluate its functionality and performance
on five case studies.

5.1 Introduction
Today 95% of all mobile devices run Android, Symbian, iOS or RIM [53]. All
those operating systems share the same security model for third party applications.

109
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When a new application is installed (or launched for the first time) the operating
system asks the user if he or she grants the application a set of permissions. Such
permissions typically allow the application to access internet, the GPS hardware,
address book data, camera, etc. Unfortunately the model is quite crude. Most
useful and innocent tasks require a combination of permissions which could just as
well be used maliciously [46, 130]. Many applications request the Internet access
permission, for example in order to display ads, together with permissions for other
phone resources, which can then potentially be remotely accessed and controlled.
For this reason it is of high importance to study techniques, such as the one proposed
in this paper, which allow policies to be expressed at a finer level of granularity.

Our proposal is to use bottom-up tree automata to track how an application
processes data at runtime. The approach monitors how each data item in an execu-
tion has been computed and prevents certain function calls from being made based
on this information. This data-centric approach to runtime monitoring allows for
a wide range of policies to be expressed, including API usage policies restricting
which methods may be applied to what arguments and data flow policies stating
how data must have been processed before being passed to certain functions.

The policies in this framework are different from the ones handled by existing
techniques. For example, as opposed to existing runtime monitoring techniques
which handle policies expressing temporal properties such as “f may be invoked
after g has been invoked but not vice versa” our approach handles policies such as
“f may be applied to the result of g but not vice versa”. A more concrete example of
a policy which is naturally expressed in our framework (but difficult or impossible
to express in others) could for instance state that sanitize accepts any string
as argument, while the function runQuery only accepts string constants, strings
returned by sanitize or concatenations of such strings.

The approach described in this paper differs from traditional runtime monitoring
on three key points. The approach is (a) data centric, (b) based on tree shaped traces
and (c) relies on richer observable actions. (a) Standard techniques [39, 64, 49, 134]
are control flow oriented: They monitor the linear flow of events as they occur
at system/thread/object level. By contrast, our technique is data oriented, al-
lowing different flows of data to be monitored in isolation, even if they are arbi-
trarily interleaved in the application. (b) Existing runtime monitoring frameworks
are typically based on deterministic finite automata (DFA) [25, 39, 64], edit au-
tomata [84], LTL [104, 67, 115, 71, 141, 140], context free grammars [92], or a
variation thereof [85, 54, 116], all of which rely on a model of linear traces. Since
our approach focuses on how data is processed, i.e. how functions are combined
rather than in what order actions are performed, traces manipulated in our frame-
work are tree shaped. (c) Similarly to work by others [13, 64, 63, 92, 84], we let
the function calls be the actions observable by the monitor. However, the fact that
monitoring is performed at the data level allows the observable actions to depend
on the computational history of each arguments in a manner which is impossible or
inconvenient using the existing frameworks.
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5.1.1 Contributions

The first contribution of the paper is a theoretical formalization of the framework
using λ-calculus. It includes a program model which records computational histo-
ries of data, and a policy model which accepts or rejects certain computations. As
our second contribution we identify three policy classes and establish their relation-
ships. As a third contribution, the paper describes a solution allowing an efficient
implementation of the approach by using so called labels which are to be seen as
abstractions of computational histories. We show how policies, which are seman-
tically defined in terms of bottom-up tree automata, can be enforced using data
labels corresponding to the automaton states. As a validation of our framework we
then show how a standard denotational semantics induces the expected monitoring
regime on a simple imperative language. The final contribution is an implemen-
tation of the framework for Java programs run on top of the Android platform.
The implementation relies on taint tracking for its underlying data flow mechanism
and on monitor inlining for policy enforcement. The practicality of the approach is
demonstrated in five different case studies.

5.1.2 Related Work

The theoretical part of the paper is related to the work on labeled λ-calculus which
was initially proposed by Lévy [81]. A labeled λ-calculus associates labels with
subterms in order to track how they affect the reduction. Gandhe, Venkatesh and
Amitabha [52] use this as a theoretical basis for analysis of certain aspects of func-
tional programs. Specifically, they define a notion of need and show how to use the
calculus to identify to what extent an argument is needed to reduce a function appli-
cation to its head normal form. This involves tracking computations and origins of
subterms just as required by our framework. However, the existing labeled λ-calculi
do not reflect the exact semantics of practical data flow tracking techniques such
as the taint tracking mechanism on which our framework relies, which is why the
calculus presented in this paper differs from existing ones.

Taint analysis is a well-known technique for tracking direct data flows and has
been studied extensively over the years. Our framework is built upon the TaintDroid
taint analysis framework [38]. TaintDroid targets Android applications and is based
on an extension of the Dalvik VM. The extension allows for simultaneous real-time
tracking of data coming from multiple different sources with the relatively small
runtime overhead of 14%.

The inlining algorithm presented in the paper builds upon the algorithm de-
scribed by Dam et al [25, 24] with important differences regarding the representation
and manipulation of automaton states.

Several papers describe static approaches for checking and enforcing policies re-
lated to the ones handled in our framework. These approaches usually rely on some
form of type system and typically focus on checking API protocols. The program-
ming language concept of typestates is one example of such an approach. Typestate
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is a refinement of the concept of a type: whereas the type of an object determines
the set of operations ever permitted on the object, a typestate determines the sub-
set of these operations which is permitted in a particular context. The idea was
introduced by Strom and Yemini [121] and has recently been developed further by
DeLine and Fändrich [30] and by Bierhoff and Aldrich [13, 14]. When compared
to our approach, a typestate could be seen as the compile-time counterpart of a
label. However, just as the runtime type of an object is more precise than its static
type, our dynamic labels are more precise than typestates. The higher precision
available at runtime allows us to avoid many of the problems that static program
analysis faces due to, for instance, aliasing and concurrency. Furthermore, even if
typestates were tracked and inspected in runtime, our notion of label is more gen-
eral than typestates, since labels are not bound to a specific type and since labels
can propagate from one object to another.

Outline
The paper is divided into two parts. The first part describes a formalization of
the approach which starts by presenting program model based on λ-calculus (Sec-
tion 5.2) and defining what a policy is (Section 4.3). This is followed by a descrip-
tion of the notion of labels (Section 5.4) and a section on how to express policies
(Section 5.5). The theoretical part of the paper is concluded by a discussion on
the applicability to imperative languages and gives an encoding for a While lan-
guage (Section 5.6). The second part of the paper describes an implementation
and evaluates the approach practically by exploring five case studies with varying
characteristics (Section 5.7 and 5.8). Concluding remarks and directions for future
work complete this paper (Section 5.9).

5.2 A Calculus with API Functions
This section presents the calculus used as theoretical foundation. The calculus is an
untyped λ-calculus extended with constants, ranged over by c ∈ C, n:ary function
symbols, ranged over by f n ∈ F and choice, written (t = t) t t. Applying f n on
c1 , . . . , cn yields a value in C atomically and without side-effects. The semantics of
functions is externally defined and written simply as Jf n(c1 , . . . , cn)K. The calculus
grammar follows:

t ::= v | t t | (t = t) t t
v ::= x | c | λx . t | f n c1 . . . cm where m < n

The standard transition relation ⇀ is identical to the extended transition relation
−→ of Figure 5.1 with the τ̂ -related annotations removed.

We regard terms as programs, and finite (resp. infinite) sequences of reductions,
written t0 ⇀ t1 ⇀ . . . ⇀ tn (resp. t0 ⇀ t1 ⇀ . . .), as runs or executions. For
brevity, we write t0 ⇀ t1 ⇀ . . . (⇀ tn) when our reasoning applies to both finite
and infinite executions.
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Example 8. Provided JuserInput()K yields some string s, JflipCoin()K yields ei-
ther hd or tl, Jsanitize(s)K yields s′, and Jexec(c)K yields r_c, the following pro-
gram:

exec (λx . ((flipCoin = hd) (sanitize x) x) userInput)
executes as follows whenever JflipCoin()K yields hd:

⇀ exec (λx.((flipCoin = hd) (sanitize x) x) s)
⇀ exec ((flipCoin = hd) (sanitize s) s)
⇀ exec ((hd = hd) (sanitize s) s)
⇀ exec (sanitize s)
⇀ exec s′
⇀ r_s′

This execution is safe as the input is sanitized before being executed. If JflipCoin()K
yields tl, the execution proceeds as follows:

. . .
⇀ exec ((tl = hd) (sanitize s) s)
⇀ exec s
⇀ r_s

This execution is unsafe. As the user input is not sanitized, the user can execute
any “bad” command.

Example 8 emphasizes a first distinction between static verification and our
dynamic approach. Static techniques reject the whole program as it contains at least
one bad execution. Our approach rejects executions where JflipCoin()K yielded tl,
but accepts the others.

5.2.1 Observable Actions
An observable action is an action performed by the program, and observed by the
execution monitor (and possibly rejected). As in similar work [24, 25, 64, 63, 39], the
observable actions are the calls to external functions. However, the novelty is the
fact that not only function identifier and argument values are taken into account,
but also the history of how the arguments were computed.

To keep track of the history of the computations the resulting constants are
annotated with a function application tree (FAT), τ̂ ::= f (τ1, . . . , τn) where τ ::= τ̂ |
c1. A FAT is intended to capture the full history of function applications producing
a constant. For example, f(g()):1 means that 1 is the result of applying f(·) to g().
Each time a function f n is called with some arguments, τ1 :c1 , . . . , τn :cn , a new tree
is constructed: f (τ1, . . . , τn). This newly created tree serves both as the annotation
of the resulting constant, and as the descriptor of the observable action that took
place. The reduction of t to t′ is written t

τ̂−→ t′ if it generates the observation τ̂ ,
1As opposed to previous chapters, τ denotes an observable action and not a silent action.
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t1
τ̂−→ t′1

t1 t2
τ̂−→ t′1 t2

T-AppL c1 = c2

(τ1 :c1 = τ2 :c2 ) t1 t2
ε−→ t1

T-CondT

t2
τ̂−→ t′2

v1 t2
τ̂−→ v1 t

′
2

T-AppR
t1

τ̂−→ t′1

(t1 = t2) t3 t4
τ̂−→ (t′1 = t2) t3 t4

T-CondL

−
(λx . t) v ε−→ t[v/x]

T-AppAbs
c1 6= c2

(τ1 :c1 = τ2 :c2 ) t1 t2
ε−→ t2

T-CondF

t2
τ̂−→ t′2

(τ1 :c1 = t2) t3 t4
τ̂−→ (τ1 :c1 = t′2) t3 t4

T-CondR

−

f n τ1 :c1 . . . τn :cn
f (τ1,...,τn)−−−−−−→ f (τ1, . . . , τn):Jf n(c1 , . . . , cn)K

T-AppFun

Figure 5.1: Reduction rules with history annotations and observable actions.

and t
ε−→ t′ otherwise. The extended semantics with annotations is described in

Figure 5.1. An unannotated reduction sequence can always be annotated to form
a corresponding annotated reduction sequence, and vice versa. In other words, ⇀
and −→ are bisimilar. Depending on the context, [τ̂ ] denotes τ̂ or ε. If the generated
observation is not relevant, the reduction is written t −→ t′.

Theorem 16. Let ∼ be a relation between unannotated terms and annotated terms
such that t ∼ t′ holds whenever t equals the term formed by replacing all annotated
constants τ :c in t′ with c. If t0 ∼ t′0 then either both t0 and t′0 are in their normal
forms, or t0 → t1 and t′0

τ−→ t′1, for some (unique) t1 and t′1 such that t1 ∼ t′1.

Proof. This follows from the fact that each Rule for → has a corresponding T-
Rule for τ−→ and the fact that the annotations do not affect which rule is chosen.
Since both reduction relations are deterministic, t1 and t′1 are unique.

Definition 23 (Observable Trace: ω◦T ). Given an execution e = t0 ⇀ . . . (⇀ tn),
T (e) is the annotated reduction sequence t′0

[τ̂1]−−→ . . . ( [τ̂n]−−→ t′n) where t′i equals ti with
every constant annotated; in particular, every constant of t′0 is annotated c : c.
Furthermore ω(T (e)) denotes the observable trace of e, which is the sequence of
observable actions [τ̂1], . . . (, [τ̂n]) with the silent actions ε filtered out.

Example 9. Let the first execution in Example 8 be denoted by e. The annotated
execution T (e) looks as follows:

exec (λx.((flipCoin = hd:hd) (sanitize x) x) userInput)
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userInput()−−−−−−−−−−−−−→ exec (λx.((flipCoin = hd:hd) (sanitize x) x) userInput():s)
ε−−−−−−−−−−−−−→ exec ((flipCoin = hd:hd) (sanitize userInput():s) userInput():s)

flipCoin()−−−−−−−−−−−−−→ exec ((flipCoin():hd = hd:hd) (sanitize userInput():s) userInput():s)
ε−−−−−−−−−−−−−→ exec (sanitize (userInput():s))

sanitize(userInput())−−−−−−−−−−−−−→ exec (sanitize(userInput()):s′)
exec(sanitize(userInput()))−−−−−−−−−−−−−→ exec (sanitize(userInput())):r_s′

The observable trace of e, ω(T (e)), is: userInput(), flipCoin(), sanitize(userInput()),
exec(sanitize(userInput())).

The calculus ensures that the annotation of any constant fully captures how that
value was computed, and filters out unrelated processing. In fact, if each constant
c in a term t is annotated with c itself and t −→∗ τ̂ :c′ then τ̂ alone can be used to
recover the computation resulting in the constant c′. This property is formalized in
Theorem 17.

Theorem 17. Given a term t in which all constants have the shape c :c, if t −→∗ τ :c′
then term(τ) −→∗ τ : c′ where term(f (τ1, . . . , τn)) = f n term(τ1) . . . term(τn) and
term(c) = c :c.

Proof. We start by showing that if, for all annotated constants τ : c in a term t,
term(τ) −→∗ τ : c holds and t −→ t′ then, for all annotated constants τ ′ : c′ in t′,
term(τ ′) −→ τ ′ : c′ holds . This is shown by induction on the derivation tree of
t −→ t′. All cases except T-AppFun are trivial as no other rule introduces a new
constant. For the T-AppFun case we need to show that term(f (τ1, . . . , τn)) −→∗
term(f (τ1, . . . , τn)) : Jf n(c1 , . . . , cn)K. We first note that term(f (τ1, . . . , τn)) = f n

term(τ1) . . . term(τn). Since we know that term(τi) −→∗ τi :ci for all annotated con-
stants in t, we have f nterm(τ1) . . . term(τn) −→∗ f n τ1 :c1 . . . τn :cn −→ f (τ1, . . . , τn) :
Jf n(c1 , . . . , cn)K.

The result now follows from the fact that all constants in t are on the form c :c
and term(c) −→∗ c :c.

Note, however, that the trace of a reduction t −→∗ τ :c may not be equal to the
trace of term(τ) −→∗ τ :c since some computations may be discarded in the former
reduction. In Example 9 for instance, exec (sanitize (userInput())) is sufficient
to retrieve the core processing resulting in r_s′ (from which the flipCoin related
code has been filtered out).

Discussion regarding branch sensitivity The choice of tracking direct func-
tion applications and not decisions regarding branching (i.e. tracking direct data
flows and not indirect ones) is deliberate but not a fundamental requirement of the
approach. The calculus could in principle be adapted to take branching decisions
(explicit indirect flows) into account simply by (1) annotating terms with a con-
text describing which computations the current computations depends upon and
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(2) update this context based on τ1 and τ2 in the T-CondT and T-CondF rules.
However, from a theoretical point of view, the policies we currently have in mind
are strongly related to data processing (i.e. what is actually computed rather than
under what conditions something is computed) and can be conveniently enforced us-
ing existing taint tracking mechanisms (i.e. mechanisms tracking only direct flows).
Moreover, from a practical point of view, the absence of efficient dynamic data
tracking mechanisms for a commercial-level system handling indirect flows, on top
of which to implement our approach, reinforces this choice.

5.3 Policies
In our setting, a policy P specifies which computations (nesting of function applica-
tions) are allowed to be performed. Since each new function application is recorded
in the form of an observable action, policies can be conveniently expressed as a
predicate over traces, i.e. sequences of observable actions. This nomenclature is
standard in monitoring, [85, 1, 64]. A reduction sequence, e, is said to be accepted
by P if and only if P(ω(T (e))) holds and rejected otherwise. In this paper, we do
not consider arbitrary policies. Some policies can not even be enforced in practice.
The class of policies considered include only the ones that are local and subtree
closed.

Definition 24 (Local Policy). A policy, P, is said to be local if a predicate P exists
such that P(c) holds for all c ∈ C and P(τ̂1, . . . (, τ̂n)) holds iff ∀0≤i (<n) P(τ̂i) holds.

This property allows us to focus on stateless policies stating which computations
may be performed rather than when they may be performed and alleviates the need
of a global monitor state. This constraint is however not fundamental and can be
relaxed by instead stating that the set of accepted traces should be prefix-closed
(i.e. that if a trace is accepted then so should all its prefixes). This would allow
policies to express temporal properties of the observable traces, such as “f may
not be evaluated until g has been evaluated” and would arguably be more suitable
when, for instance, dealing with functions with side-effects. Such class of policies
has however been studied in depth already, [24, 25, 1] and we see no incompatibility
with those studies and the results in this paper.

Definition 25 (Subtree Closed Policy). A local policy is subtree closed if the set
of observable actions for which P (Definition 24) holds is subtree closed.

This property rules out policies that for instance accept the evaluation of g(f())
but rejects the evaluation of f(). As discussed in Section 5.3.1 such policies are
not meaningful in languages with call-by-value semantics like Java, since f() indeed
needs to be evaluated in order to evaluate g(f()) (in a call-by-name setting however,
f() does not necessarily need to be evaluated).
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Example 10. A typical example of a policy which is local and subtree closed could
for instance express that sanitize accepts any string, while exec only accepts re-
sults from the sanitize function (i.e. all strings must be sanitized before they are
passed to exec). With such a policy, the evaluation of the term of Example 8 is
accepted if flipCoin returns hd and rejected otherwise.

Before providing a syntax and accompanying semantics for defining policies (Sec-
tion 5.5), the paper examines the relation between the different policy classes (Sec-
tion 5.3.1) and introduces the notion of labels (Section 5.4).

5.3.1 A Hierarchy of Policy Classes
This section discusses the relation between prefix-closed (PC), local (Loc) and
subtree-closed (SC) policies, both in general and under the assumption of a call-by-
value semantics (CBV).

The hierarchy can be summarized as follows: Subtree-closed policies are by def-
inition also local. Local policies are not necessarily subtree closed (Theorem 18)
except for CBV semantics (Theorem 19). Local policies are prefix-closed (Theo-
rem 20) but prefix-closed policies are not necessarily local, not even when assuming
a CBV semantics (Theorem 21). Figure 5.2 depicts the hierarchy in a Venn diagram.

Call-by-Value Arbitrary reduction strategy

SC Loc PC

Figure 5.2: Relation between policy classes

As a general CBV reduction relation, the paper use the ⇀-relation presented in
Section 5.2.

Lemma 10. In CBV semantics, if τ̂1, . . . , τ̂n, f i(τj , . . . , τk) is a prefix of a trace of
an execution ω(T (t0 ⇀ . . . (⇀ tm))), then ( {τj , . . . , τk} \ C ) ⊆ {τ̂1, . . . , τ̂n}.

Proof. Any argument of f i must have the form τl : c. Either c comes from the
original term, in which case τj ∈ C or c is the result of a function application prior
to f i(τj , . . . , τk) in which case τj ∈ {τ̂1, . . . , τ̂n}.
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Theorem 18 (Loc * SC). Local policies are not necessarily subtree closed.

Proof. Any policy accepting all permutations of a non-subtree-closed set of observ-
able actions is in Loc but not in SC. The policy that accepts the trace g(f()), but
not the trace f(), is an example of such policy. (Note that this policy hold in a
call-by-name setting if the result of f() is not needed when evaluating g(f()).)

By assuming a CBV semantics, the counterexample in the above proof is ruled
out. In fact no counter example can be constructed for the above theorem under
such semantics.

Theorem 19 (CBV ⇒ (Loc = SC)). In a CBV semantics, any local policy is
subtree-closed.

Proof. Let P be the predicate (Definition 24) of a local policy P. In CBV, any τ̂j =
f j(τk, . . . , τl) in a trace τ̂1, . . . (, τ̂n) accepted by P is such that every τm ∈ τk, . . . , τl is
either in C (and P(τm) by Definition 24) or, by Lemma 10, in τ̂1, . . . , τ̂j−1 (and P(τm)
by Definition 24). Therefore, CBV⇒ (Loc ⊆ SC) and Definition 25 concludes.

Theorem 20 (Loc ⊆ PC). A local policy is prefix-closed.

Proof. Let P be the predicate (Definition 24) of a local policy P. If P accepts some
trace ω then P must hold for all observable actions in ω. Since P holds for all
observable actions in each prefix of ω, P accepts all prefixes of ω which makes P
prefix-closed.

Theorem 21 (PC * Loc). Prefix-closed policies are not necessarily local, not even
when assuming CBV.

Proof. The policy that accepts f() and f(), g(), but not g(), is prefix-closed but not
local.

5.4 Labels
Manipulating FATs at runtime for enforcement is not efficient in practice. For
instance, if a policy requires an argument to be the result of an even number of
applications of toggle, the FATs could grow indefinitely, despite the fact that a
boolean value would suffice to maintain and describe the relevant computational
history. To circumvent this problem, labels are introduced to replace FATs. A label
can be seen as an abstraction of a FAT.

Labels (denoted by α, β, ...) range over a set L of ground labels closed under ⊕.
A special label L0 ∈ L denotes the default label and is used for constants present
in the initial term. By convention, Lf denotes the label associated to f n (Lf can
be the same as Lg). The deterministic ⊕ operator is used to compute the label of
the result of a function application. ⊕ can be seen as an abstraction of the FAT
constructor. The pair 〈L,⊕〉 is referred to as a labeling scheme. It has the nice
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t1 →⊕ t′1
t1 t2 →⊕ t′1 t2

L-AppL −
(α1 : c = α2 : c) t1 t2 →⊕ t1

L-CondT

t2 →⊕ t′2
v1 t2 →⊕ v1 t

′
2

L-AppR
t1 →⊕ t′1

(t1 = t2) t3 t4 →⊕ (t′1 = t2) t3 t4
L-CondL

−
(λx.t1) v →⊕ t1[v/x] L-AppAbs

c1 6= c2
(α1 : c1 = α2 : c2) t1 t2 →⊕ t2

L-CondF

t2 →⊕ t′2
(α1 : c = t2) t3 t4 →⊕ (α1 : c = t′2) t3 t4

L-CondR

γ = Lf ⊕ α1 ⊕ · · · ⊕ αn
fn α1 : c1 . . . αn : cn →⊕ γ : Jfn(c1, . . . , cn)K L-AppFun

Figure 5.3: Reduction rules with labels.

property to be instantiable to reflect the taint tracking policy of TaintDroid, on
which our implementation is based.

For enforcement purposes, programs are evaluated using a new semantics −→⊕
manipulating labels similar to the one of Figure 5.1 where observable actions are re-
moved and tree-annotated constants τi :ci are replaced by label-annotated constants
αi :ci . The new set of reduction rules is presented in Figure 5.3.

Just as in the case with FATs, the labels do not affect the resulting terms and
every annotated reduction sequence has a corresponding unannotated reduction
sequence. strip(t) is t with the label of every constant removed and init(t) is the
term t in which each unlabeled constant c is replaced by L0 :c.

Proposition 7. If t −→n
⊕ t
′ then strip(t) ⇀n strip(t′).

The reverse is true for every term only if ⊕ is a total function. It is a potential
property of an execution.

Definition 26 (Valid Labeling). An execution t0 ⇀n tn has a valid 〈L,⊕〉-labeling
iff there exists t′1, . . . , t′n such that init(t0) −→n

⊕ t
′
n where ti = strip(t′i) for i ∈ [1, n].

By allowing ⊕ to be a partially defined function certain sequences of reductions
are ruled out due to the premise of the L-AppFun rule. This can be (and is)
exploited as an enforcement mechanism as shown in the following definition.

Definition 27 (〈L,⊕〉 Enforcement). 〈L,⊕〉 enforces a policy P if all executions
with valid 〈L,⊕〉-labelings are accepted by P. If the reverse also holds, i.e. all
executions accepted by P have a valid 〈L,⊕〉-labeling, 〈L,⊕〉 is said to precisely
enforce P.

An example of how a labeling scheme enforces a sanitize before executing-policy
is presented in Example 12 in Section 5.6.
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When reasoning about the correctness of the labeling scheme we need a way
to tell which label a certain FAT corresponds to. For this purpose we define the
RL,⊕-function as follows:

Definition 28 (RL,⊕). RL,⊕(τ) is defined as follows:

RL,⊕(c) = L0

RL,⊕(f (τ1, . . . , τn)) = Lf ⊕RL,⊕(τ1)⊕ . . .⊕RL,⊕(τn)

Lemma 11 (Labels abstract FATs). For any t0:

to −→n τ :c ∧ RL,⊕(τ) ∈ L ⇔ init(t0) −→n
⊕ RL,⊕(τ):c

Proof. By induction on the length of the derivation. The only interesting case,
T-AppFun, follows directly from the semantical definitions and Definition 28.

An execution is accepted iff, for any observable action τ̂ generated, RL,⊕(τ̂) is
defined.

Theorem 22 (Accepted execution). Execution e = t0 ⇀
n tn has a valid 〈L,⊕〉-

labeling (init(t0) −→n
⊕ t
′
n) iff, for any τ̂ in ω(T (e)), RL,⊕(τ̂) is defined (RL,⊕(τ̂) ∈ L).

Proof. Assuming −→ goes through, −→⊕ can only fail on L-AppFun, whose cor-
responding rule T-AppFun is the only one generating observable FATs. Hence,
if RL,⊕(τ̂) is defined for any τ̂ in ω(T (e)) then Lemma 11 helps conclude that
init(t0) −→n

⊕ t′n. The other direction is proved by induction on the length of
init(t0) −→n

⊕ t′n and by observing that, by Lemma 10 and induction hypothesis,
for any subtree τ of the potentially newly generated FAT τ̂n+1, RL,⊕(τ) is defined
and, by Lemma 11, equal to the corresponding label in t′n. Hence, RL,⊕(τ̂n+1) is
defined.

5.5 Defining and Enforcing Policies

As suggested previously, security policies in this work are defined by a bottom-up
deterministic finite tree automaton (DFTA) [20] that characterizes a set of FATs.

Definition 29 (DFTA [20]). A (bottom-up) deterministic finite tree automaton
over a ranked alphabet A is a tuple A = (Q,A,Qf ,∆) where Q is a set of (unary)
states, Qf ⊆ Q is a set of accepting states and ∆ is a partial function defined by
a set of transition rules of the form a(q1 (t1), . . . , qn(tn)) _ q(a(t1, . . . , tn)) where
n ≥ 0, a ∈ An, q1 , . . . , qn ∈ Q and t1, . . . , tn are terms over A.

A ground term t of A is accepted by an automata A (t ∈ L(A)) if t _∗ q(t) for
some q ∈ Qf .
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Intuitively, an automaton accepts a term t iff every node in the tree t can be
annotated with a state such that the root node is annotated with a final state, and
the annotations are compatible with the transition rules ∆.

A policy is defined in terms of a DFTA over F ∪ C, from now on referred to as
a security tree automaton (STA).

Definition 30 (STA). A security tree automaton is a DFTA A = (Q,F∪C,Q,∆)
such that there exists q0 in Q and for all c in C: c _ q0 (c) ∈ ∆.

PA denotes the policy defined by the STA A whose set of accepted traces is
{[τ̂0, . . . (, τ̂n)] | ∀i ∈ [0, n]. τ̂i ∈ L(A)}.

Lemma 12. A policy defined in terms of a STA is local.

Proof. The predicate P(τ) def= τ ∈ (C∪L(A)) is a valid candidate showing that the
policy PA is local according to Definition 24.

Additionally, as for ordinary security automata [113], all states of a STA are
required to be accepting (this does not imply that all trees are accepted, since ∆
is partial). This requirement is sufficient to ensure that STA policies are subtree
closed.

Lemma 13. The language of a STA is subtree closed.

Proof. If f(τ1, . . . , τn) is accepted, then there exist some states q, q1 , . . . , qn such
that f (τ1, . . . , τn) _∗ f (q1 (τ1), . . . , qn(τn)) _ q(f (τ1, . . . , τn)). This means that, for
all τi in τ1, . . . , τn, τi _∗ qi(τi) and since Qf = Q, τi is also accepted.

If there exists an injective function from the states of an STA A to the labels of
a labeling scheme 〈L,⊕〉 and ⊕ simulates the transitions in ∆ then 〈L,⊕〉 precisely
enforces PA.

Theorem 23 (Equivalent 〈L,⊕〉). 〈L,⊕〉 precisely enforces the policy described by
the STA A = (Q,F ∪ C,Q,∆) if there exists an injective function L : Q → L such
that, with Lc = L0 for all c in C:

L(q) = La ⊕ L(q1 )⊕ . . .⊕ L(qn) ⇐⇒
a(q1 (τ1), . . . , qn(τn)) _ q(a(τ1, . . . , τn)) ∈ ∆ (5.1)

Proof. Following Definition 27, it is sufficient that for a given L the following holds
for any execution e = t0 ⇀

n tn:

e has a valid 〈L,⊕〉-labeling ⇐⇒ e is accepted by PA
Since the policy is local and since all states in the policy automaton are accepting,
by Lemma 22 and Definition 30, it is sufficient to show the following for each
τ̂ ∈ ω(T (e)):
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RL,⊕(τ̂) ∈ L ⇐⇒ ∃q. τ̂ _∗ q(τ̂)

which follows from the following holding for all τ :

τ _∗ q(τ) ⇒ RL,⊕(τ) = L(q) (5.2)
RL,⊕(τ) = α ⇒ τ _∗ L−1(α)(τ) (5.3)

(5.2) and (5.3) follow by induction on τ by assuming (5.1).

We now turn to the syntax of the language for describing security tree automata.
We first give a concrete self-explanatory example and then generalize this into a
proper definition.

Example 11. A policy stating that the function exec only accepts strings returned
by another function sanitize, or concatenations of any such strings is written as:

{unsanitized, sanitized},
{sanitize(α) : true → sanitized

concat(α1 , α2 ) : α1 = α2 = sanitized→ sanitized
true → unsanitized

exec(α) : α = sanitized→ sanitized}

Where the default label L0 equals unsanitized.

The general syntax of a policy is defined as follows.

Definition 31 (Policy Syntax). Syntactically, a policy is expressed as follows

{L0, L1, . . . , LnL},
{f n1

1 (α11 , . . . , α1n1 ) : guard11 → expr11
· · ·
guard1g1 → expr1g1 ,...

f nk
k (αk1 , . . . , αknk ) : guardk1 → exprk1

· · ·
guardkgk

→ exprkgk
}

where each guard is a boolean expression and each expr is a label expression, both
of which are composed from the declared label constants, the argument labels and
simple tests such as equality.

Intuitively, when f ni
i is invoked the formal parameters, αi1, . . . , αini , are bound

to the labels associated with the arguments. The return label is computed from
the expression expr ij corresponding to the first guard guardij that holds among
guardi1, . . . , guardigi

. If no guard holds, the invocation is to be seen as a violation
of the policy.

A formal translation into a security tree automaton follows.
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Definition 32 (Policy Semantics).Given a policy P in the syntax of Definition 31,
the corresponding security tree automaton, AP = (Q,F ∪ C,Q,∆), is defined as
follows: Q = {q0 , q1 , . . . , qnL} and ∆ = {c _ q0 (c) | c ∈ C} ∪

⋃
δij, where each δij

represents the set of automaton transitions corresponding to guard j in clause i:

{ fi(q ′1 (x1), . . . , q ′ni (xni)) _ q ′(fi(x1, . . . , xni))
| q ′1 . . . q ′ni ∈ Q ∧ q ′ = Jexpr ij [qk/Lk

][q ′k/αik ]K
∧ Jguardij [qk/Lk

][q ′k/αik ]K

∧ ¬
∨

1≤g<j
Jguardig[qk/Lk

][q ′k/αik ]K }

As mentioned in Section 5.4, the enforcement mechanism does not, for practical
reasons, work directly on FATs but on labels. To enforce a policy, an equivalent
labeling scheme is needed. For policies expressed in the syntax of Definition 31,
such labeling scheme can be defined as follows.

Definition 33. Given a policy P in the syntax of Definition 31, the labeling scheme
LS(P) is defined as 〈{L0, L1, . . . ,
LnL} ∪ {Lfi},⊕〉 where Lfi ⊕ α1 ⊕ · · · ⊕ αni is:

if Jguardi1[αk/αik ]K then Jexpr i1[αk/αik ]K
else if . . . then . . .
else if Jguardigi

[αk/αik ]K then Jexpr igi
[αk/αik ]K

We now show that LS(P) indeed precisely enforces P according the semantics
defined in Definition 32.

Theorem 24 (Correctness of LS). Given a policy P in the syntax of Definition 31,
LS(P) enforces P precisely.

Proof. Follows directly from Theorem 23 with L(qi) = Li

5.6 Labeled Imperative Language
A λ-calculus is a natural candidate for the core language since central concepts
such as function applications are easily represented. Furthermore, the structure
and potential data flow in a program is arguably clearer if written in the form of
a λ-term than in a language with side effects. Nonetheless it is important to make
sure that the calculus is general enough to serve as a foundation for other languages
as well, such as Java which is the language of applications monitored by TreeDroid.
This section introduces a While-language whose semantics track labels in a natural
way. A straightforward encoding of the language in our calculus is then provided
and shown to agree with the labeling semantics.
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−
〈n, σ〉�⊕ L0 : n

〈E, σ〉�⊕ α : n
〈xk := E, σ〉�⊕ σ[xk 7→ α : n]

−
〈xk, σ〉�⊕ σ(xk)

〈E, σ〉�⊕ α : n
〈return E, σ〉�⊕ α : n

〈S1, σ〉�⊕ σ
′

〈S1;S2, σ〉�⊕ 〈S2, σ
′〉

〈E1, σ〉�⊕ α1 : n 〈E2, σ〉�⊕ α2 : n
〈if E1 = E2 then S1 else S2, σ〉�⊕ 〈S1, σ〉

〈S1, σ〉�⊕ 〈S′1, σ′〉
〈S1;S2, σ〉�⊕ 〈S′1;S2, σ

′〉
〈E1, σ〉�⊕ α1 : n1 〈E2, σ〉�⊕ α2 : n2 n1 6= n2
〈if E1 = E2 then S1 else S2, σ〉�⊕ 〈S2, σ〉

〈E1, σ〉�⊕ α1 : n1 〈E2, σ〉�⊕ α2 : n2 n1 6= n2
〈 while E1 = E2 do S, σ〉�⊕ σ

〈E1, σ〉�⊕ α1 : n1 . . . 〈Em, σ〉�⊕ αm : nm
〈f(E1, . . . , Em), σ〉�⊕ Lf ⊕ α1 ⊕ · · · ⊕ αm : Jf(n1, . . . , nm)K

〈E1, σ〉�⊕ α1 : n 〈E2, σ〉�⊕ α2 : n
〈 while E1 = E2 do S, σ〉�⊕ 〈S; while E1 = E2 do S, σ〉

Figure 5.4: Semantics of the While-language with Function Application Monitoring.

The language presented in this section is a simple imperative language with loops
and the addition of labels, external function applications and return statement.
The small-step operational semantics of the language is given in Figure 5.4. A
configuration is represented as 〈S, σ〉 where S is the statement to be executed and
σ the current store. The store maps variables to labeled values and the initial store,
σ0, maps each variable to L0 :0.

Example 12. The program in this example is similar to the one of Example 8.

x1 := userInput();
if flipCoin() = 1 then

x1 := sanitize(x1)
else
x1 := x1;
return exec(x1)

With the labeling scheme, 〈{L0, input, sanitized, result, LflipCoin , Lsanitize, LuserInput ,
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Lexec}, ⊕〉 where

α1 ⊕ α2 ⊕ . . .⊕ αm =



L0 if α1 = LflipCoin
input if α1 = LuserInput
sanitized if α1 = Lsanitize

result if
{
α1 = Lexec
α2 = sanitized

an execution in which flipCoin yields 1 terminates:

〈x1 := userInput(); if flipCoin() = 1 then . . . , σ0〉
�⊕ 〈if flipCoin() = 1 then . . . , σ0[x1 7→ input:7]〉
�⊕ 〈x1 := sanitize(x1); . . . , σ0[x1 7→ input:7]〉
�⊕ 〈return exec(x1), σ0[x1 7→ sanitized:7′]〉
�⊕ result:7′′

and an execution in which flipCoin yields 0 would get stuck:

〈x1 := userInput(); if flipCoin() = 1 then . . . , σ0〉
�⊕ 〈if flipCoin() = 1 then . . . , σ0[x1 7→ input:7]〉
�⊕ 〈x1 := x1; . . . , σ0[x1 7→ input:7]〉
�⊕ 〈return exec(x1), σ0[x1 7→ input:7]〉

since Lexec ⊕ input is undefined.

Figure 5.5 gives an encoding of While in the style of state transformers with
C = N and F = {f1, . . . , fk}.

Auxiliary definitions:
get = λs. λx. s x
set = λs. λx. λv. λk. (k = x) v (s k)
fix = λg. (λx. g (λy. x x y)) (λx. g (λy. x x y))

Expressions:
JnK = λs. L0 : n

JxkK = λs. get s k
Jf(E1, . . . , Em)K = λs. f (JE1K s) . . . (JEmK s)

Statements:
JS1;S2K = λs. JS2K (JS1K s)

Jxk := EK = λs. set s k (JEK s)
Jif E1 = E2 then S1 else S2K = λs. (JE1K s = JE2K s) (JS1K s) (JS2K s)

Jwhile E1 = E2 do SK = fix (λw. λs. (JE1K s = JE2K s) (w (JSK s)) s)
Jreturn EK = λs. JEK s

Figure 5.5: Encoding of While in our λ-calculus

Definition 34. A state is a term λk. t which reduces to a labeled constant when
applied to a number: (λk. t) n →∗ α : c. A state s and a store σ agree, s ∼ σ, iff
s k →∗ σ(xk) for all k.
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Initial state for evaluation is s0 = λk. L0 : 0. The following lemmas show that
�⊕ evaluating P accepts the same executions as −→⊕ evaluating JPK.

Lemma 14 (Expression equivalence). If s ∼ σ then 〈E, σ〉 �⊕ α :n ⇔ JEK s −→∗⊕
α:n.

Proof. By structural induction on E. For E ≡ n, we have 〈n, σ〉 �⊕ L0 : n
and JnK s −→⊕ L0 : n. For E ≡ xk, we have 〈xk, σ〉 �⊕ σ(xk) and JxkK s −→⊕
(λs.get s k) s −→⊕ get s k −→⊕ s k where s k reduces to σ(xk) by Definition 34. For
E ≡ f (E1, . . . , Em), 〈f (E1, . . . , Em), σ〉 �⊕ Lf ⊕ α1 ⊕ . . . ⊕ αm : Jf (n1, . . . , nm)K,
assuming 〈Ei, σ〉 �⊕ αi : ni . By induction, Jf (E1, . . . , EmK s = λs.f (JE1Ks) . . .
(JEmK s) reduces to f α1 :n1 . . . αm :nm and then Lf⊕α1⊕ . . .⊕αm : Jf (n1, . . . , nm)K.

Definition 35. The reduction relation, →+ is provided in Fig 5.6.

JS1K s→+ JS′1K s′

JS1;S2K s→+ JS′1;S2K s′
JS1K s→+ s′

JS1;S2K s→+ JS2K s′

JEK s→ α : n
Jxk := EK s→+ λk′.(k′ = k) α : n (s k)

JE1K s→ α1 : n JE2K s→ α2 : n
Jif E1 = E2 then SK s→+ JSK s

JE1K s→ α1 : n1 JE2K s→ α2 : n2 n1 6= n2

Jif E1 = E2 then SK s→+ s

JE1K s→ α1 : n JE2K s→ α2 : n
J while E1 = E2 do SK s→+ JS; while E1 = E2 do SK s

JE1K s→ α1 : n1 JE2K s→ α2 : n2 n1 6= n2

J while E1 = E2 do SK s→+ s

Figure 5.6: →+ reduction relation

Lemma 15. Each →+-reduction can be represented by one or more →-reductions,
i.e. →+ ⊆→∗.

Proof. The conclusion of each →+-rule can be expanded into a sequence of →
reductions assuming the premises of the rule holds. For brevity we only include the
first while-rule where JE1K s reduces to the same constant as JE2K s.

J while E1 = E2 do SK s
= (fix (λw.λs.(JE1K s = JE2K s) (w (JSK s)) s)) s
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→⊕ (λs.(JE1K s = JE2K s) ((fix (λw.λs.(JE1K s = JE2K s) (w (JSK s)) s)) (JSK s)) s) s
→⊕ (JE1K s = JE2K s) ((fix (λw.λs.(JE1K s = JE2K s) (w (JSK s)) s)) (JSK s)) s
→∗⊕ (α1 : n = α2 : n) ((fix (λw.λs.(JE1K s = JE2K s) (w (JSK s)) s)) (JSK s)) s
→⊕ (fix (λw.λs.(JE1K s = JE2K s) (w (JSK s)) s)) (JSK s)
= JS; while E1 = E2 do SK s

Lemma 16. If σ ∼ s we know that 〈S, σ〉 → 〈S′, σ′〉 ⇔ JSK s →+ JS′K s′ (or
〈S, σ〉 → s′ ⇔ JSK s→+ s′) for some σ′ and s′ such that σ′ ∼ s′.

Proof. By structural induction on S. The interesting case is the assignment state-
ment, since it is the assignments that affect the store. (The other cases follow by
the same reasoning as for the while-loop and the while-rule in Proof 15.)

We assume σ ∼ s. By Lemma 14 we know that 〈xk := E, σ〉 reduces to σ[xk 7→
α : n] if and only if Jxk := EK s = (λs.set s k (JEK s)) s reduces to λl.(l = k) α :
n (s k) and since σ ∼ s we see that σ[xk 7→ α : n] ∼ λl.(l = k) α : n (s k).

Theorem 25. For any While statement S, we have: JSK s0 →∗⊕ α : n if and only
if 〈S, σ0〉 →⊕ α : n

Proof. By Lemma 15, the fact that→ is deterministic and since JSK s always reduces
to s′ or JS′K s′ for some S′ and s′, we can write the reduction JSK s0 →∗ α : n on
the form JSK s0 →+ JS1K s1 →+ . . . →+ JSmK sm → α : n iff 〈S, σ0〉 → α : n. By
Lemma 16 and the fact that σ0 ∼ s0 we know that that σm ∼ sm. By case analysis
we know that Sm must be a return statement and by Lemma 14 Jreturn EK sm
reduces to the same term as 〈return E, σm〉.

5.6.1 Supporting References

Apart from side-effects imperative languages commonly support references, i.e. val-
ues that point to other values. In such settings a few questions arises: Does it make
sense to also let references have labels? If so, should two references referring to the
same value be able to have different labels? When should the label of the reference
be used, and when should the label of the value it refers to be used? The answer is
that it depends on the situation. In some cases it does indeed make sense to have
labels for references while in other cases it is more suitable to use the label of the
referred value.

Assume for example that some processes share a set of files through file references
provided by the system. Each process can ask the system either for read access or
for write access to a file. The system makes sure that only one process can write
to a file at any given point, while it allows for an arbitrary number of processes to
read from a file. In this scenario it is the actual handle to the file that determines
if it may be used for reading or writing. Thus the labels should be associated with
the file references rather than the files directly.
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Figure 5.7: Overview of the implementation.

In an entirely different scenario you may want to express that a file may only
be written to while being open, it makes little sense to associate labels with the
file references, since after a file has been closed it may not be written to using any
reference. In such situation it is more suitable to associate the label with the files.

5.7 Implementation

From a formal point of view, there is a large gap between the While-language and
a real world language such as Java. Conceptually however, the semantics presented
in the previous section outlines how the implementation of the labeling semantics
works for Java. This section describes an implementation targeting Java (bytecode)
and the Android platform which follows this outline. Implementing the framework
involves solving two main tasks: tracking data flows and intercepting policy relevant
function calls. In our implementation we solve the first task using taint analysis
and the second task using monitor inlining. An overview of the framework is shown
in Figure 5.7.

5.7.1 Tracking Data Flows using Taint Analysis

Taint analysis (also known as taint tracking) is a common technique for tracking
data flows at runtime. The technique relies on (1) having points at which data
is originally tainted (taint sources), (2) making sure that taints propagate along
with every data flow (taint propagation) and (3) having points at which taints of
output data is intercepted (taint sinks). In our work we rely on taint propagation
for tracking data flows by letting taints represent labels. The notion of taint sources
and sinks however are factored out and handled by the inlined monitor.

Taint analysis implementations targeting the JVM has been described by several
authors [61, 127, 18, 38]. Our implementation uses the TaintDroid framework by
Enck et al [38] which targets the Android Platform. TaintDroid is based on a
modified version of the Dalvik VM which taints data coming from various privacy
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related sources such as the GPS, camera, microphone etc. and monitors the taints
of data being sent on the network.

Limitations due to Taint Analysis

In TaintDroid a taint is represented by a 32-bit word where each bit corresponds
to one of the privacy related sources. If for instance the taint of a value v has
bit 25 and bit 32 is set, then v contains data which potentially comes from the
camera and GPS respectively. When data is copied from one location to another,
the taint is copied along with it. If two values v1 and v2 are combined (added or
concatenated for instance) the taint of the result is determined by the bitwise or of
the taint of v1 and the taint of v2. While this approach makes sense when working
with the type of privacy related policies which TaintDroid is intended for, it poses a
limitation on what policies we are able to enforce in our framework. For a policy to
be enforceable, when using TaintDroid as the underlying taint tracking mechanism,
it must have the two properties described below.

Property 1. If L is the set of labels in a policy P, there need to exist an injective
function F of type L→ 2{1,...,32} such that the range of F is closed under ∪.

This property ensures that for any two labels L1 and L2 there exists a label
L3 such that F (L1) ∪ F (L2) = F (L3) or, put differently, the bitwise or-operation
performed by TaintDroid always yields a taint representing a valid label.

The other property is regarding arithmetic operations. Such operations are
encoded as external functions in the theory, but in practice do not correspond to
observable actions.

Property 2. Whenever an arithmetic operation is applied to two labeled constants
L1 : c1 and L2 : c2 the policy must define the resulting label as F−1(F (L1) ∪ F (L2))
where F is the function described in Property 1.

In terms of abstract algebra, Property 1 and 2 hold for a policy P iff there
exists a monomorphism between the two algebras (L,�) and (2{1,...,32},∪) where �
is the label operator for arithmetic operations induced by P. Our implementation
assumes that these properties hold for all policies given to the inliner, and does not
have syntactical support for defining custom behavior for arithmetic operations.

Taint Propagation: Or vs And

Using bitwise or as taint propagation mechanism is suitable when handling confi-
dentiality properties. When for example enforcing a policy such as “do not send
address book data on the network”, a phone number should maintain its taint, even
if it is manipulated. Conceptually however, our framework works just as well for
integrity related properties, such as “send text messages only to numbers from my
address book”. Enforcing such policies call for a bitwise and propagation mechanism
since if a phone number is manipulated, it should lose its taint.
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To support both types of policies, we split the taint words in two parts: bits 0-15
which are or :ed together when combined (referred to as or-flags), and bits 16-31
which are and:ed together when combined (referred to as and-flags). Rather than
changing the actual propagation code in TaintDroid however, we simply changed
the default taint from 32 zeros to 16 zeros followed by 16 ones and inverted the
interpretation of the and-flags.

5.7.2 Intercepting Calls using Monitor Inlining

Whenever a program is about to call a function the monitor needs to check if the
call is allowed by the policy or not. If it is not allowed the call should be prevented
(for instance by terminating the execution) and if it is allowed the label of the
result of the function call should be set according to the policy. This task could be
handled by the VM. However, our implementation delegates the task to the program
itself by inlining the monitor code into the program. This approach is known as
monitor inlining [39] and has the advantage of not requiring extra support from the
execution environment.

Inlining a monitor into P involves the following steps:

1. Parse a policy P given in the syntax specified in Definition 31.

2. Traverse P’s code and replace each call to a policy relevant function fi with
code that does the following

a) Copy the arguments from the operand stack to local variables (as they
may be needed after the call when evaluating the label expression in
step 2e)

b) Until a guard guardij holds, evaluate the guards successively starting with
guardi1 . If guardij holds store j in a temporary variable x and go to 2d.

c) Terminate the execution due to policy violation.

d) Perform the original function call.

e) Evaluate expr1x and assign the resulting label to the value returned by
the function.

Steps 2b and 2e rely on code for accessing the labels of certain values. Since the
labels are not accessible directly through bytecode instructions this requires inter-
action with TaintDroid. As TaintDroid was not originally designed to interact with
client programs, a few minor modifications to TaintDroid were required (exposing
some internal methods).

The inlining step is fully automatic and can conveniently be added to the compile
chain, as it has been done by editing the build settings in the Eclipse IDE for
example.
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Limitations due to Client-Side Inlining

The general client-side inlining limitations have been explored previously [25, 24].
The main drawback in our setting is the lack of complete mediation [109] (function
calls made internally by the runtime library are not observable).

The solution is to let the policy prevent internal computations from violating
the policy, by restricting the calls performed by the client. For example, if exec is
a policy relevant function, the policy must also restrict calls to functions that call
exec internally, such as wrapper functions. This may require an over approximation
of the intended policy.

Provided all internal policy violations are avoided by the above technique, as
the resulting label would be overridden by the monitor when control returns to the
client code regardless of the internal computations, the lack of complete mediation
is irrelevant when calling functions which are explicitly mentioned in the policy.
However, one cannot expect that a policy has a clause for each function in the Java
API. To relate the behavior of our implementation to the theory of the framework,
the semantics of calling a method not mentioned in the policy is considered to be the
same as if the body of that method was recursively unfolded into the client code. In
other words, the labels of values returned by internal function calls are determined
solely by the rules for arithmetic operations (as described in Section 5.7.1).

5.7.3 Handling Impure Functions

For simplicity, the theoretical presentation of the framework is restricted to pure
functions. As shown in Theorem 17, the value of an argument in such setting is
fully determined by its FAT. For this reason the observable actions do not entail
information regarding actual values of arguments. However, a language like Java
depends heavily on impure functions. The case studies highlight the importance of
being able to reason about argument values.

The modifications needed for proper handling of impure functions are however
straightforward and do not affect the theorems presented in the paper. FATs (and
thus observable actions) need to take argument values into account which is done
by the following T-AppFun reduction:

fn τ1 : c1 . . . τn : cn
f(τ1:c1,...,τn:cn)−−−−−−−−−−→ f(τ1 : c1, . . . , τn : cn) : Jfn(c1, . . . , cn)K

Similarly ⊕ needs to operate on labeled constants instead of just labels and the
L-AppFun needs to be written as

γ = Lf ⊕ α1 : c1 ⊕ · · · ⊕ αn : cn
fn α1 : c1 . . . αn : cn → γ : Jfn(c1, . . . , cn)K

These modifications allow the policy guards and expressions to refer to the
argument values in addition to the argument labels. Modifications to the definitions
of the derived policy automaton and labeling scheme are straightforward.



132
CHAPTER 5. TREEDROID: A TREE AUTOMATON BASED APPROACH TO

ENFORCING DATA PROCESSING POLICIES

5.8 Case Studies
This section evaluates the approach and the implementation in five case studies with
varying characteristics. The webpage [89] contains full details including concrete
policies.

5.8.1 Case Study 1: DroidLocator

Just as the popular application Find My Phone for iPhone, the DroidLocator ap-
plication allows the user to locate a lost or stolen Android device through a web
service. As opposed to Find My Phone and other similar services however, DroidLo-
cator prevents server administrators and third parties from using the location data
maliciously. It does so by encrypting the location data, based on a user-provided
key, before uploading it to the server. When the user later retrieves the encrypted
location data, he or she can decrypt it without revealing the location to anyone else.

Application

DroidLocator is a small application written by one of the paper’s authors. It re-
trieves the location data from the GPS hardware, uses the javax.crypto package
to encrypt it with a key retrieved through EditText.getText, and submits it to
the server using the standard socket API.

Policy

The desired policy states that (A) the location may not be sent over the network
unless it is encrypted and that (B) the encryption key needs to be provided by
the user (retrieved through EditText.getText on an object with no prior calls to
EditText.setText). Figure 5.8 shows the policy expressed in terms of the syntax
in Definition 31. The formal semantics of this policy is provided by the STA, ADL,
obtained from Figure 5.8 by Definition 32. Examples of FATs accepted and rejected
by ADL are found in Figure 5.9.

The labeling scheme used at runtime is obtained by following Definition 33 and
adapting it to TreeDroid as described in Section 5.7. The resulting set of labels L is:
{016116 (L0), 1015116 (sock), 01014116 (conf), 001013116 (nonuser), 017115 (userenc),
01610114 (userinp)}, and the bitwise-or operator is used for ⊕.

The label specifying that data contains location information is encoded using an
or-flag and the label specifying that data is encrypted is encoded using an and-flag.

Results

The behavior was unaffected by monitor inlining since the original application ad-
hered to the policy. When the code was changed to use as encryption key a pre-
defined string literal (such as, in Figure 5.9, the empty string), the execution was
terminated before the location was uploaded.
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{L0, sock, conf, userinp, userenc, nonuser},
{LocationManager.

getLastKnownLocation(α) : true → conf
Location.toString(αloc) : true → αloc
EditText.setText(αet , αtext) : true → nonuser
EditText.getText(αet) : αet 6= nonuser→ userinp

true → L0
Editable.toString(α) : true → α
SimpleCrypto.getRawKey(α) : true → α
SimpleCrypto.encrypt(αk, αm) : αk = user→ userenc

true → αm
Socket.getOutputStream(α) : true → sock
OutputStream.write(αout , αval) : αval = L0 → L0

αval = userenc→ L0
αout 6= sock→ L0}

Figure 5.8: Policy for DroidLocator case study.

5.8.2 Case Study 2: Sms2Group

An application, Sms2Group, requiring the send_sms permission, allowing users
to send SMS-messages to groups of contacts, is studied. The policy in this study
restricts which numbers messages may be sent to.

Application

Sms2Group has been developed for the purpose of this study. The application allows
the user to automate the task of sending text messages to a group of contacts. It
relies on the group attribute in the contact book, fetched using the content provider
API and uses the ordinary SmsManager.sendTextMessage method to send SMSes.

Policy

Messages are prevented from being sent to arbitrary numbers by ensuring that
destination numbers (first argument of sendTextMessage) originate from the local
address book. The label specifying that a value is a valid destination number is
encoded using an and-flag which prevents attackers from using a modified address
book number. This general policy naturally separates legitimate executions from
malicious ones. Using traditional inlining techniques this type of policy would be
expressed using a guard that scans the address book and checks that the destination
number is present. There are two conceptual differences between these approaches.
As opposed to a policy that relies on scanning the address book, our policy expresses
that an SMS may not be sent to numbers with arbitrary origin even if the number is
present in the address book. In this sense our policy is stricter. Another difference
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Figure 5.9: Accepted (top) and rejected (bottom) FATs for the DroidLocator policy.

is that a scan of the address book is typically a linear operation, whereas checking
the taint of a value is a constant time operation.

Results

The inlining did not affect the functionality of the original program as it adheres to
the policy. When changing the code so that the program attempts to send an SMS
to a hard-coded number or a number from the address book concatenated with an
arbitrary string the policy is violated and the program is terminated as expected.

5.8.3 Case Study 3: Bankdroid

This case study examines an internet banking application, Bankdroid, which allows
users to review account information from several different banks. The application
has many security concerns as the information it handles (balances, recent transac-
tions, etc) is usually considered confidential. The main objective of the case study
is to demonstrate how standard security policies can be applied transparently on
real world honest applications, while still blocking dishonest variants of the same
applications.
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Application

Bankdroid (40k lines of code) is distributed through Google Play and is currently
installed on 100.000+ devices [58]. It uses the Apache HttpClient library to com-
municate with the banks. To allow the policy to be expressed at the level of sockets
(instead of at the level of the Apache HttpClient API), the library has been included
in the client code base which adds another 60k lines of code.

Policy

The policy is a Chinese-Wall like policy which states that data received from host
A may be sent back to host A but not to some other host B. As mentioned in
the above paragraph, the policy is expressed at the level of sockets which makes it
general and applicable to many other applications requiring Internet access.

Examples of accepted and rejected FATs is found in Figure 5.10.

InputStream.write

Socket.getOutputStream

Socket.connect

“somebank.com”

InputStream.read

Socket.getInputStream

Socket.connect

“somebank.com”

InputStream.write

Socket.getOutputStream

Socket.connect

“example.com”

InputStream.read

Socket.getInputStream

Socket.connect

“somebank.com”

Figure 5.10: Accepted (top) and rejected (bottom) FATs for the Bankdroid policy.

Results

The application was modified to leak the current balance of each bank account to a
host controlled by a potential attacker. The policy was then inlined in the modified
application. When the leak was about to take place, the inlined code successfully
terminated the execution.
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5.8.4 Case Study 4: Auto Birthday SMS

Auto Birthday SMS is a application distributed on Google Play. It has over 10,000
installs [57] and allows the user to automatically send SMS-messages to friends on
their birthdays. It is free of charge but displays ads which are retrieved over the
network. It requires the internet and send_sms permissions. Applications re-
quiring this combination of permissions are interesting to study since trojans sending
premium-rate SMS messages are relatively common [46] and could potentially trans-
form the phone into an SMS spamming bot. As demonstrated in this case study,
TreeDroid is useful even for honest coders in order to harden their applications by
inlining generic security policies.

Application

Application data, including numbers to send messages to, are stored in a SQLite
database. The code turns out to be vulnerable to SQL-injection attacks which can
be exploited by any application with permission to modify the address book data.
The code calls SQLiteDatabase.execSQL, which updates the database, with an
unsanitized query containing the name of a contact. The contact name should be
sanitized by DatabaseUtil.sqlEscapeString before running the query.

Policy

The policy applied is a general sanitize-before-query policy stating that a query
passed to execSQL must be a string literal, a result of sqlEscapeString or a con-
catenation of such strings. The label used for sanitized values is encoded using an
and-flag to ensure that the concatenations of sanitized and unsanitized strings are
considered sanitized. An example of an accepted FAT is found in Figure 5.11. Omit-
ting the call to sqlEscapeString would result in a tree which would be rejected by
the policy.

SQLiteDatabase.execSQL

StringBuilder.toString

StringBuilder.append

DatabaseUtil.sqlEscapeString

contactName

new StringBuilder

"SELECT * . . . WHERE name="

Figure 5.11: Accepted FAT for the SQL policy.
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Results

The inlined code prevents the application from performing queries containing unsan-
itized arguments, such as raw contact names, in the SQL statements. The original
application violates the policy upon certain user actions, in such cases execution is
successfully terminated by the monitor.

5.8.5 Case Study 5: Lovetrap
Lovetrap is a real world SMS-trojan detected by Symantec in July 2011 [124].
Among other bad behaviors, it sends premium rate SMS messages (which is the
focus of this study). This case study demonstrates the efficiency of TreeDroid on
real world attacks.

Application

Lovetrap, which looks like a regular game, starts a service which downloads a list
of numbers and messages which it repeatedly tries to send by SMS.

Policy

The policy from case study 1 is reused without modification, which is an indication
of the policy genericness.

Results

By locally redirecting requests going to the host of the attacker to our own server,
we managed to supervise the actions of the trojan. The monitor inlining at the
bytecode level proceeds as expected without special tweaking. After inlining, the
trojans service is terminated immediately and therefore no longer able to send SMS
messages as intended.

5.8.6 Statistics
Case studies statistics have been collected in Table 5.12. For applications where we
have access to the source code, business logic execution time has been measured.
In Bankdroid we measured the time it takes to update the accounts, for DroidLo-
cator we measured the time it takes to encrypt and upload the location, and for
Sms2Group we measured the time it takes to collect the group information and
send the SMS. Taint tracking runtime overhead has been estimated by TaintDroids
authors to about 14 % on a Google Nexus One [38]. Our measurements (signifi-
cantly higher, as expected since they are performed using Dalvik in debug mode on
an Android emulator) are included for comparison with the runtime overhead due
to the inlined code. The bytecode size overhead in the Auto Birthday SMS study
is due to the fact that the relatively common operation of concatenating strings is
considered policy relevant.
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Lines of Java source code: 330 240 101079 N/A N/A
Size bytecode before inlining: 16.8 kB 17.0 kB 2.6 MB 193.9 kB 55.0 kB
Size increase due to inlining: 24.9 % 35.2 % 0.395 % 43.2 % 5.30 %
Inlining duration: 178 ms 190 ms 2740 ms 870 ms 210 ms
Policy relevant method calls: 11 15 213 359 1
Number of policy clauses: 9 4 14 5 4
Average total execution time: 142 ms 884 ms 9780 ms N/A N/A
Overhead due to TaintDroid: 38.9 % 53.3 % 28.0 % N/A N/A
Overhead due to inlined code: 45.4 % 16.9 % 19.5 % N/A N/A
Downloads on Google Play: N/A N/A >100,000 >10,000 N/A

Figure 5.12: Statistics from the case studies.

5.9 Conclusions and Future Work

The paper presents a new monitoring technique using tree automata to track and
enforce data processing constraints in a novel way. Many security properties, which
were either difficult or impossible to express using existing techniques, can be
treated. The approach is theoretically well-founded and practical as demonstrated
by the various case studies.

Usability could be further increased by using techniques that give a formal se-
mantics to textual policies [93, 126]. It would allow application authors to provide
usage description of required permissions (which is a recommended good practice)
that are both user-readable and from which enforceable formal policies could be
extracted.

The focus on direct flows that can be tracked by taint analysis is not due to
a fundamental limitation of the approach. A possible direction for future work
would be to extend the program model, notion of observable actions and policy
semantics to support indirect flows (decisions influencing data processing). It should
be noted, however, that no practical approaches currently exists that can provide
a comprehensive protection against covert flows anyway, and so it is far from clear
that the added quality of protection offered by such an extension really motivates
the additional complexity and runtime overhead.

Another direction for future work is to extend the implementation to support
complete mediation. This could be done by either (a) allowing the inliner to rewrite
relevant parts of the runtime library or by (b) solving the task of monitoring function
calls using some other technique than inlining. Since our implementation separates
policy and mechanism (TaintDroid is unaware of the policy being enforced, and
the inliner works independently of the underlying data tracking mechanism) it is
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flexible enough to be extended in either way.
Concurrency poses no problems if the order of policy relevant actions does not

matter (as for local policies) since each thread can be monitored in isolation. For
non-local policies, however, where the order of the actions does matter, the monitor
has to synchronize the threads to exclude schedulings that yield illegal executions.
This requires inlined code to be executed atomically together with policy relevant
actions. This is problematic for a client-side inliner due to the fact that there is no
way to acquire a lock before calling a method, and releasing it immediately when
control has passed into the API method. The solution is either to release the lock
after the policy relevant method has completed, i.e. use a blocking inliner [25] or
restrict attention to so-called race free policies [22].

Leveraging tree automata theory allows for reuse of existing algorithms such as
automata containment and minimization. Exploring these techniques further is left
as future work.

Finally, our approach could very well be used in conjunction with existing
control-flow bound techniques which would allow policies to express properties such
as “if the authenticate method returned true for credentials that has been provided
by the user, queries do not have to be sanitized”. Some techniques for linear moni-
toring can also naturally be applied directly to tree based monitoring. Translating
the idea of using edit automata instead of ordinary word automata into the context
of tree automata would for instance allow us to express policies such as “whenever
an unsanitized query is about to be evaluated, sanitize it first”.
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Chapter 6

Concluding Remarks

The following research topics have been addressed in this thesis:

• How to support monitor inlining as a security mechanism without including
an inliner in the trusted computing base.

• How to correctly (securely, transparently and conservatively) implement mon-
itor inlining for multhithreaded programs.

• What type of policies can be enforced correctly in a multithreaded setting
without locking across security relevant actions.

• How to lift the IRM certification to multithreaded applications.

• How to express and enforce policies that constrain more complex API-protocols
and data dependencies.

6.1 Summary of Results
As shown in the paper presented in Chapter 2, it is possible to use proof-carrying
code to certify that a correct monitor inlining has been performed. This allows us to
reduce the TCB by replacing the inliner with a relatively simple proof checker. The
approach is proven sound and shown to work in practice by means of a prototype
implementation and evaluation in two case studies.

How to correctly implement reference monitor inlining as a security enforce-
ment mechanism in a multithreaded program is answered in the paper presented in
Chapter 3. This paper presents a secure but somewhat crude approach to inlining
based on a serialization of all security relevant actions (blocking inlining). This
approach is not fully transparent, but without assuming certain properties of the
given policies and/or programs, it is not possible to solve the problem in general.
To characterize what is to be considered correct inlining of policies that are not
possible to enforce transparently, the paper proposes the notion of strong conserva-
tivity (and a few variations of this property) and shows that the presented inlining
algorithm is strongly conservative.

141



142 CHAPTER 6. CONCLUDING REMARKS

A prototype based on the presented inlining scheme was developed and the
practicality and effectiveness evaluated in four case studies.

The paper presented in Chapter 4 addresses the question of what policies can
be enforced without serializing all security relevant actions. This class of policies
is referred to as race-free policies and include all policies that do not require that
a call takes place before any other event, or any return takes place after another
event. Policies that fall outside of this class are shown not to be inlineable, and for
the policies that are race-free an example inliner is provided shown to be correct.
The results imply that the class of race-free policies is the maximal set of inline-
able policies. The paper also presents the results from a new set of case studies
based on web applications and Swing-based GUI applications (which are inherently
multithreaded).

Furthermore the paper shows how IRM certification can be lifted to multi-
threaded applications. This is done by including, in the certificate, information
regarding exactly where the security lock is being acquired and released. Once
this is established, the proof checker can basically fall back on checking the inlined
instructions sequentially.

Finally, the paper presented in Chapter 5 addresses the question of how to en-
force data-centric policies that express constraints involving data-dependencies. It
does so by presenting the concept of tree-based monitoring. In tree-based moni-
toring the observable actions entails, apart from the method name and argument
values, the history of observable actions involved in the computations of the argu-
ment values. Constraints are expressed in terms of what arguments can be applied
to which methods using a tree automata based policy model. A description of how
the idea can be effectively realized through an abstraction of the function application
trees is presented, and implemented in a prototype targeting the Android platform.
The prototype is successfully evaluated in five case studies which includes real world
applications and malware.

6.2 Future Work
Before the techniques presented in this thesis gets a wider adoption a few issues
needs to be addressed.

Tools and Integration
The implementations described in this thesis are prototypes used to evaluate the
theoretical results and to demonstrate a proof of concept. The tools are not as
polished as one may wish and lacks adequate documentation. For a wider adoption
of the techniques, this would need to be addressed. An Eclipse plugin which provides
a user friendly policy editor and adds the inlining step to the compile chain would
be a step in the right direction.

Furthermore the techniques needs some form of device integration. Adding
an inlining mechanism (or proof-checker) to the application manager, such as the
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AppStore on iOS or the Google Play application in Android would be one user
friendly solution.

IRM Optimizations
The naive implementations presented in this thesis put no effort in trying to optimize
the IRM. This means that programs that call security relevant methods in a policy
adherent way still suffers from the code-size and runtime overheads induced by the
IRM. This is something that could be addressed in many practical situations by an
optimizing inliner. Even if the inliner cannot eliminate checks all together, it may
be able to move snippets of inlined code out of loops etc. This is a venue for future
work, closely related to compiler research.

Policy Containment
In the scenario presented in the first paper the application contract is inlined by
the developer. When the application is downloaded or installed by the end user,
the TCB needs to verify that the application contract is indeed compatible with the
device policy. This process involves a DFA containment check, which is tractable
only for DFAs of limited sizes. This issue has been discussed and partially addressed
in [12], but requires further research and better tool support before the technique
as a whole can be widely adopted.

Monitoring API
In the work presented in this thesis, an inliner is regarded as non-transparent and/or
non-conservative (i.e. “incorrect”) if it affects the policy-adherent executions of the
target program. This is a good starting point and base line for research on security
enforcement through monitor inlining. From a practical point of view, this is not
always a desirable property, since it rules out all interaction between the client
program and the security mechanism. In a practical setting it would for instance
be more user friendly if the application could query the IRM for its current state
and dynamically adapt to the device policy.
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