
ar
X

iv
:1

01
2.

29
95

v1
 [

cs
.L

O
]

 1
4

D
ec

 2
01

0

A Proof Carrying Code Framework for Inlined Reference Monitors

in Java Bytecode

Mads Dam, Andreas Lundblad

Royal Institute of Technology, KTH

December 15, 2010

Abstract

We propose a light-weight approach for certification
of monitor inlining for sequential Java bytecode using
proof-carrying code. The goal is to enable the use
of monitoring for quality assurance at development
time, while minimizing the need for post-shipping
code rewrites as well as changes to the end-host TCB.
Standard automaton-based security policies express
constraints on allowed API call/return sequences.
Proofs are represented as JML-style program anno-
tations. This is adequate in our case as all proofs
generated in our framework are recognized in time
polynomial in the size of the program. Policy adher-
ence is proved by comparing the transitions of an in-
lined monitor with those of a trusted “ghost” monitor
represented using JML-style annotations. At time of
receiving a programwith proof annotations, it is suffi-
cient for the receiver to plug in its own trusted ghost
monitor and check the resulting verification condi-
tions, to verify that inlining has been performed cor-
rectly, of the correct policy. We have proved correct-
ness of the approach at the Java bytecode level and
formalized the proof of soundness in Coq. An imple-
mentation, including an application loader running
on a mobile device, is available, and we conclude by
giving benchmarks for two sample applications.

1 Introduction

Program monitoring [23, 20, 8] is a well-established
technique for software quality assurance, used for a

wide range of purposes such as performance monitor-
ing, protocol compliance checking, access control, and
general security policy enforcement. The conceptual
model is simple: Monitorable events by a client pro-
gram are intercepted and routed to a decision point
where the appropriate action can be taken, depend-
ing on policy state such as access control lists, or on
application history. This basic setup can be imple-
mented in a huge variety of ways. In this paper our
focus is monitor inlining [15]. In this approach, mon-
itor functionality is weaved into client code in AOP
style, with three main benefits:

• Extensions to the TCB needed for managing ex-
ecution of the client, intercepting and routing
events, and policy decision and enforcement are
to a large extent eliminated.

• Overhead for marshalling and demarshalling pol-
icy information between the various decision and
enforcement points in the system is eliminated.

• Moreover, there is no need to modify and main-
tain a custom API or Virtual Machine.

This, however, presupposes that the user can trust
that inlining has been performed correctly. This is
not a problem if the inliner is known to be correct,
and if inlining is performed within the users juris-
diction. But it could of interest to make inlining
available as a quality assurance tool to third parties
(such as developers or operators) as well. In this pa-
per we examine if proof-carrying code can be used
to this effect in the context of Java and mobile ap-
plications, to enable richer, history-dependent access

1

http://arxiv.org/abs/1012.2995v1

control than what is allowed by the current, static
sandboxing regime.
Our approach is as follows: We assume that J2ME

applications are equipped with contracts that ex-
press the provider commitments on allowed sequences
of API calls performed by the application. Con-
tracts are given as security automata in the style of
Schneider [30] in a simple contract specification lan-
guage ConSpec [2]. The contract is compiled into
bytecode and inlined into the application code as in
PoET/PSLang [14], and a proof is generated assert-
ing that the inlined program adheres to the contract,
producing in the end a self-certifying code “bundle”
consisting of the application code, the contract, and
an embedded proof object.
Upon reception the remote device first determines

whether the received bundle should be accepted for
execution, by comparing the received contract with
the device policy. This test uses a simulation or lan-
guage containment test, and is explored in detail by
K. Naliuka et al. [7].
The contribution of this paper is the efficient repre-

sentation, generation, and checking of proof objects.
The key idea is to compare the effects of the inlined,
untrusted, monitor with a “ghost” monitor which im-
plements the intended contract. A ghost monitor is
a virtual monitor which is never actually executed,
and which is represented using program annotations.
Such a ghost monitor is readily available by simply
interpreting the statements of the ConSpec contract
as monitor updates performed before and after se-
curity relevant method calls. No JVM compilation is
required at this point, since these updates are present
solely for proof verification purposes.
The states of the two monitors are compared stat-

ically through a monitor invariant, expressing that
the state of the embedded monitor is in synchrony
with that of the ghost monitor. This monitor invari-
ant is then inserted as an assertion at each security
relevant method call. The assertions for the remain-
ing program points could then in principle be com-
puted using a weakest pre-condition (WP) calculus.
Unfortunately, there is no guarantee that such an ap-
proach would be feasible. However, it turns out that
it is sufficient to perform the WP computations for
the inlined code snippets and not for the client code,

under some critical assumptions:

• The inlined code appears as contiguous subse-
quences of the entire instruction sequences in the
inlined methods.

• Control transfers in and out of these contiguous
code snippets are allowed only when the monitor
invariant is guaranteed to hold.

• The embedded monitor state is represented in
such a way that a simple syntactic check suffices
to determine if some non-inlined instruction can
have an effect on its value.

The last constraint can be handled, in particular, by
implementing the embedded monitor state as a static
member of a final security state class. The important
consequence is that instructions that do not appear in
the inlined snippets, and do not include putstatic

instructions to the security state field, may be an-
notated with the monitor invariant to obtain a fully
annotated program. This means, in particular, that a
simple syntactic check is sufficient to eliminate costly
WP checks in almost all cases and allows a very open-
ended treatment of the JVM instruction set.
The resulting annotations are locally valid in the

sense that method pre- and post-conditions match,
and that each program point annotation follows from
successor point annotations by elementary reasoning.
This allows to robustly and efficiently generate and
check assertions using a standard verification condi-
tion (VC) approach, as indicated in Figure 1.
Our approach is general enough to handle a wide

range of inliners. The developer (who has a better in-
sight in the application in question) is free to tweak
the inlining process for his specific application and
could for instance optimize for speed in certain secu-
rity relevant call sites, and for code size elsewhere.

1.1 Related Work

Our approach adopts the Security-by-Contract (SxC)
paradigm (cf. [7, 25, 12, 20, 8]) which has been ex-
plored and developed mainly within the S3MS project
[28].
Monitor inlining has been considered by a number

of authors, cf. [15, 14, 13, 1, 34].

2

Bytecode Contract

? ?

Inliner

Proof Generator

?

Inlined Classes

?

Ghost Annotator

?

Classes + Ghost monitor

?

Ghost Annotator

VC Checker

?

Classes + Ghost monitor

?

VC Generator

?

Verification Conditions

?

?

Adherence Proof

?

Valid/Invalid

? ?

?

Code Producer Code Consumer

Figure 1: The architecture of our PCC implementa-
tion.

Erlingsson and Schneider [14] represents security
automata directly as Java code snippets, making the
resulting code difficult to reason about. The Con-
Spec contract specification language used here is for
tractability restricted to API calls and (normal or
exceptional) returns, and uses an independent ex-
pression syntax. This corresponds roughly to the
call/return fragment of PSLang which includes all
policies expressible using Java stack inspection [15].

Edit automata [22, 23] are examples of security
automata that go beyond pure monitoring, as trun-
cations of the event stream, to allow also event in-
sertions, for instance to recover gracefully from pol-
icy violations. This approach has been fully imple-
mented for Java by J. Ligatti et al. in the Polymer
tool [5] which is closely related to Naccio [16] and
PoET/PSLang [14].

Certified reference monitors has been explored by
a number of authors, mainly through type systems,
e.g. in [31, 6, 35, 18, 11], but more recently also
through model checking and abstract interpretation
[33, 32]. Directly related to the work reported here
is the type-based Mobile system due to Hamlen et
al. [18]. The Mobile system uses a simple library ex-

tension to Java bytecode to help managing updates
to the security state. The use of linear types allows
a type system to localize security-relevant actions to
objects that have been suitably unpacked, and the
type system can then use this property to check for
policy compliance. Mobile enforces per-object poli-
cies, whereas the policies enforced in our work (as
in most work on IRM enforcement) are per session.
Since Mobile leaves security state tests and updates
as primitives, it is quite likely that Mobile could be
adapted, at least to some forms of per session policies.
On the other hand, to handle per-object policies our
approach would need to be extended to track object
references. Finally, it is worth noting that Mobile
relies on a specific inlining strategy, whereas our ap-
proach, as mentioned in the previous section, is less
sensitive to this.
In [33, 32] Sridhar et al. explores the idea of certi-

fying inlined reference monitors for ActionScript us-
ing model-checking and abstract interpretations. The
approach is not tied to a specific inlining strategy and
is general enough to handle different inlining tech-
niques including non-trivial optimizations of inlined
code. Although the certification process is efficient,
the analysis however, has to be carried out by the
consumer.
For background on proof-carrying code we refer to

[26]. Our approach is based on simple Floyd-like pro-
gram point annotations in the style of Bannwarth
and Müller [3], and method specifications extended
by pre- and post-conditions in the style of JML [17].
Recent work related to proof-carrying code for the
JVM include [4], all of which has been developed in
the scope of the Mobius project.
An alternative to inline reference monitoring and

proof-carrying code, is to produce binaries that are
structurally simple enough for the consumer to ana-
lyze himself. This is currently explored by B. Chen
et al. in the Native Client project [36] which han-
dles untrusted x86 native code. This is done through
a customized compile chain that targets a subset of
the x86 instruction set, which in effect puts the ap-
plication in a sandbox. When applicable it has a few
advantages in terms of runtime overhead, as it elim-
inates the monitoring altogether, but is constrained
in terms of application and policy complexity.

3

1.2 Overview of the Paper

The JVMmachine model is presented in Section 2. In
Section 3 the state assertion language is introduced,
and in Section 4 we address method and program
annotations and give the conditions for (local and
global) validity used in the paper. We briefly de-
scribe the ConSpec language and (our version of) se-
curity automaton in Section 5. The example inlining
algorithm is described briefly is Section 6. Section
7 introduces the ghost monitor, and Section 8, then,
presents the main results of the paper, namely the al-
gorithms for proof generation and proof recognition,
including soundness proofs. Finally, Section 9 reports
briefly on our prototype implementation, and we con-
clude by discussing some open issues and directions
for future work.

2 Program Model

We assume that the reader is familiar with Java byte-
code syntax and the Java Virtual Machine (JVM).
Here, we only present components of the JVM, that
are essential for the definitions in the rest of the text.
Much of this is standard and can be skipped in a
first reading. A few simplifications have been made
in the presentation. In particular we disregard static
initializers, and to ease notation a little we ignore
issues concerning overloading. We use c for (fully
qualified) class names, m for method names, and f
for field names. Types are either primitive or object
types, i.e. classes, or arrays. Class declarations in-
duce a class hierarchy, denoted by <:. If c defines
m (declares f) explicitly, then c defines (declares)
c.m (c.f). Otherwise, c defines c′.m (declares c′.f)
if c is the smallest superclass of c′ that contains an
explicit definition (declaration) of c.m (c.f). Single
inheritance ensures that definitions/declarations are
unique, if they exist.

We let v range over the set of all values of all types.
Values of object type are (typed) locations, mapped
to objects, or arrays, by a heap h. The typing asser-
tion h ⊢ v : c asserts that v is some location ℓ, and
that in the typed heap h, ℓ is defined and of type c,
and similarly for arrays. Typing preserves the sub-

class relation, in the sense that if h ⊢ v : c and c <: c′

then h ⊢ v : c′ as well. For objects, it suffices to
assume that if h ⊢ v : c then the object h(v) deter-
mines a field h(v).f (method h(v).m) whenever f (m)
is declared (defined) in c. Static fields are identified
with field references of the form c.f . To handle those,
heaps are extended to assignments of values to field
references.
A program is a set of classes, and for our purposes

each class denotes a mapping from method identifiers
to definitions (I,H) consisting of an instruction array
I and an exception handler array H .
We write c.m[L] = ι to indicate that c(m) = (I,H)

and that IL is defined and equal to the instruction ι.
The exception handler arrayH is a list of of exception
handlers. An exception handler (b, e, L, c) catches
exceptions of type c and its subtypes raised by in-
structions in the range [b, e) and transfers control to
address L, if it is the first handler in the handler ar-
ray that catches the exception for the given type and
instruction.
A configuration of the JVM is a pair C = (h,R) of

a heap h and a stack R of activation records. For nor-
mal execution, the activation record at the top of the
execution stack has the shape (M, pc, s, l), where M
is the currently executing method, pc is the program
counter, s ∈ Val∗ is the operand stack, and l is the
local variable store. Except for API calls (see below)
the transition relation →JVM on JVM configurations
is standard. A configuration (h, (M, pc, s, l) :: R) is
calling, if M [pc] is an invoke instruction, and it is
returning normally, if M [pc] is a return instruction.
For exceptional configurations the top frame has the
form (ℓ) where ℓ is the location of an exceptional ob-
ject, i.e. of class Throwable. Such a configuration is
called exceptional. We say that C is returning excep-
tionally if C is exceptional, and if C →JVM C′ implies
that C′ is exceptional as well. I.e. the normal frame
immediately succeeding the top exceptional frame in
C is popped in C′, if C′ is exceptional as well.
An execution E of a program P is a (possibly infi-

nite) sequence of JVM configurations C0C1 . . . where
C0 is an initial configuration consisting of a single,
normal activation record with an empty stack, no lo-
cal variables, M as a reference to the main method
of P , pc = 0 and for each i ≥ 0, Ci →JVM Ci+1.

4

We restrict attention to configurations that are type
safe, in the sense that heap contents match the types
of corresponding locations, and that arguments and
return/exceptional values for primitive operations as
well as method invocations match their prescribed
types. The Java bytecode verifier serves, among other
things, to ensure that type safety is preserved under
machine transitions.
The only non-standard aspect of →JVM is the

treatment of API methods. We assume a fixed
API for which we have access only to the signature
(types), but not the implementation, of its methods.
We therefore treat API method calls as atomic in-
structions with a non-deterministic semantics. In this
sense, we do not practice complete mediation [29].
When an API method is called either the pc is in-
cremented and arguments popped from the operand
stack and replaced by an arbitrary return value of
appropriate type, or else an arbitrary exceptional ac-
tivation record is returned. Similarly, the return con-
figurations for API method invocations contain an ar-
bitrary heap, since we do not know how API method
bodies change heap contents. Our approach hinges
on our ability to recognize API calls. This property
is destroyed by the reflect API, which is consequently
not considered.

3 Assertions

Annotations are given in a language similar to the
one described by F. Y. Bannwart and P. Müller in [3].
The syntax of assertions a and (partial) expressions
e are given in the following BNF grammar:

e ::= v | e.f | c.f | si | li | e ◦ e | a→ e|e | (e, e) | ⊥

a ::= tt | ff | e r e | a ∧ a | ¬a | e : c

where i ∈ ω. The semantics, as mappings ‖e‖C
and ‖a‖C is given in Figure 2. The operations ◦
and r are generic binary operators/relation symbols,
respectively, with Kleene equality. The expression
si refers to the i’th element of the operand stack,
and li refers to the i’th local variable; the expression
a → e1 | e2 is a conditional, (e1, e2) is pairing and tt
and ff represent true and false respectively; a heap

‖e.f‖(h,R) = h(‖e‖(h,R)).f
‖c.f‖(h,R) = h(c.f)

‖si‖(h, (M, pc, s, r) :: R) = si
‖li‖(h, (M, pc, s, r) :: R) = li

‖e1 ◦ e2‖C = ‖e1‖C ◦ ‖e2‖C

‖e1 → e2 | e3‖C =

{

‖e2‖C , ‖e1‖C = tt
‖e3‖C, otherwise

‖(e1, e2)‖C = (‖e1‖C, ‖e2‖C)
‖⊥‖C = ⊥
‖tt‖ = tt
‖ff‖ = ff

‖e1 r e2‖C = ‖e1‖C r ‖e2‖C
‖a1 ∧ a2‖C = ‖a1‖C ∧ ‖a2‖C

‖¬a‖C = ‖a‖C

‖e : c‖(h,R) =

{

tt if h ⊢ ‖e‖(h,R) : c
ff otherwise

Figure 2: Semantics of expressions and assertions

assertion is an assertion that does not reference the
stack, or any of the local variables. Disjunction
(∨) and implication (⇒) are defined as usual. We
let if(a0, a1, a2) denote the conditional expression
(a0 ⇒ a1) ∧ (¬a0 ⇒ a2) and select(a1, a2, aelse)
the generalized conditional expression
if(a1,0, a2,0, if(a1,1, a2,1, . . . , if(a1,n, a2,n, aelse) . . .)).

4 Extended Method Defini-

tions

In this section we extend the method definitions by an
array of program point assertions and by invariants
at method entry and (normal or exceptional) return.

Definition 1 (Extended Method Definition).
An extended method definition is a tuple
(I,H,A, pre, post) in which (I,H) is a method
definition, A is an array of assertions such that
|I| = |A| and pre and post are heap assertions.
An extended program is a program with extended
methods.

For extended programs, the notions of transition
and execution are not affected by the presence of as-
sertions. An extended program is valid, if all anno-

5

IL wp(I,H,A,pre,post)(L)

instanceof c AL+1[s0 : c/s0]
aload n unshift(AL+1[ln/s0])
astore n (shift(AL+1)) ∧ s0 = ln
athrow select((s0 : c ∧ b ≤ L < e)(b,e,L′,c)∈H

(AL′)(b,e,L′,c)∈H , post)
dup unshift(AL+1[s1/s0])
getfield f unshift(AL+1[s0.f/s0])
getstatic c.f unshift(AL+1[c.f/s0])
goto L′ AL′

iconst n unshift(AL+1[n/s0])

if icmpeq L′
if(s0 = s1, shift

2(AL′), shift2(AL+1))
ifeq L′

if(s0 = 0, shift(AL′), shift(AL+1))
invoke c.m

∧

c′∈defs(c.m) prec′.m
putstatic c.f shift(AL+1)[s0/c.f]
return post
ldc v unshift(AL+1[v/s0])
invokestatic

System.exit tt

Table 1: Specification of the wpM function

tations are validated by their corresponding configu-
rations in any execution starting in a configuration
satisfying the initial pre-condition. In other words:

Definition 2 (Extended Program Validity). An ex-
tended program P is valid if for each maximal execu-
tion E = C0C1 · · ·Ck of P

1. ‖premain‖C0 holds,

2. ‖postmain‖Ck holds, and

3. for each i such that 0 ≤ i ≤ k, if Ci has
the shape ((M, pc, s, r) :: R, h) and P (M) =
(I,H,A, pre, post) then ‖Apc‖Ci holds

The WP-calculus used in the proof generation /
recognition is given in Table 1. The definition uses
the auxillary functions shift and unshift which incre-
ments, resp. decrements, each stack index by one
and defs(c.m) which denotes the set of all classes c′

such that c <: c′ and c′ defines m. The account of
dynamic call resolution in Table 1 is crude, but the
details are unimportant since, in this paper, pre- and
post-conditions are always identical and common to
all methods.

A locally valid method is one for which each asser-
tion can be validated by reference to “neighbouring”
assertions only.

Definition 3 (Local Validity). An extended method
M = (I,H,A, pre, post) is locally valid, if the verifi-
cation conditions

1. pre ⇒ A0, and

2. AL ⇒ wpM (L) for all 0 ≤ L < |I|

are valid. An extended program is locally valid if all
its methods are locally valid and the pre-condition of
the main method holds in an initial configuration.

We note that local validity implies validity, as ex-
pected.

Theorem 1 (Local Validity Implies Validity). For
any extended program P , if P is locally valid then P
is valid.

Proof. Follows by induction on the length of the exe-
cution. For details we refer to the Coq formalization
[24].

5 Security Specifications

We consider security specifications written in a pol-
icy specification language ConSpec [2], similar to
PSlang [14], but more constrained, to be amenable
to analysis. An example specification is given in
Figure 3. The syntax is intended to be largely self-
explanatory: The specification in Figure 3 states that
the program can only send files using the Bluetooth
Obex protocol upon direct request by the user. No
exception may arise during evaluation of the user
query.
A ConSpec specification tells when and with what

arguments an API method may be invoked. If
the specification has one or more constraints on a
method, the method is security relevant. In the
example there are two security relevant methods,
GUI.fileSendQuery and Bluetooth.obexSend. The
specification expresses constraints in terms before,
after and exceptional clauses. Each clause is a
guarded command where the guards are side-effect

6

SECURITY STATE String lastApproved = "";

AFTER file = GUI.fileSendQuery()

PERFORM true -> { lastApproved = file; }

EXCEPTIONAL GUI.fileSendQuery()

PERFORM

BEFORE Bluetooth.obexSend(String file)

PERFORM file = lastApproved -> { }

Figure 3: A security specification example written in
ConSpec.

free and terminating boolean expressions, and the as-
signment updates the security state. Guards may
involve constants, method call parameters, object
fields, and values returned by accessor or test meth-
ods that are guaranteed to be side-effect free and ter-
minating. Guards are evaluated top to bottom in or-
der to obtain a deterministic semantics. If no clause
guard holds, the policy is violated. In return clauses
the guards must be exhaustive.

5.1 Security Automata

A ConSpec contract determine a security automaton
(Q,Σ, δ, q0) where Q is a countable (not necessar-
ily finite) set of states, Σ is the alphabet of secu-
rity relevant actions, q0 ∈ Q is the initial state, and
δ : Q×Σ → Q is the transition function. We assume
a special error state ⊥ ∈ Q and view all states in
Q except ⊥ as accepting. We require that security
automata are strict in the sense that δ(⊥, α) = ⊥.

A security automata is generated by a ConSpec
contract in a straightforward manner (cf. [1]). The
alphabet Σ is partitioned into pre-actions (for calls)
and (normal or exceptional) post-actions (for nor-
mal or exceptional returns). Pre-actions have the
form (c.m,v)↑, normal post-actions have the form
(c.m,v, r)↓ and exceptional post-actions have the
form (c.m,v)⇓, where c.m is the relevant API-
method, v is the arguments used when calling the
method, and r is the returned value.

Executions produce security relevant actions in the
expected manner. A calling configuration generates a
pre-action determined by the called method and the
current arguments (top n operand stack values for an
n-ary method). A returning configuration then gives
rise to a normal post-action determined by the identi-
fier of the returning method and the return value (top
operand stack value). For sake of simplicitly we as-
sume that all API methods return a value. An excep-
tionally returning configuration generates an excep-
tional post-action determined by the method identi-
fier of the returning method. The security relevant
actions (the security relevant trace) of an execution
E is denoted by SRT (E) and formally defined below.

Definition 4 (Security Relevant Trace). The secu-
rity relevant trace, SRT (E), of an execution E is de-
fined as

SRT(E) = SRT(E, ǫ)
SRT(ǫ, ǫ) = ǫ

SRT (CE, γ) =























































































(c′.m′,v)↑SRT(E,v :: γ)

if C = (h, (c.m, pc,v :: s, l) :: R)
is calling c′.m′

(c.m,v, r)↓SRT(E, γ′)

if C = (h, (c.m, pc, r :: s, l) :: R)
is returning and γ = v :: γ′

(c.m,v)⇓SRT (E, γ′)

if C = (h, (o) :: R) is returning
exceptionally and γ = v :: γ′

SRT(E, γ) otherwise

We generally identify a ConSpec contract with its
set of security relevant traces, i.e. the language rec-
ognized by its corresponding security automaton. A
program is said to adhere to a contract if all its se-
curity relevant traces are accepted by the contract.

Definition 5 (Contract Adherence). The program
P adheres to contract C if for all executions E of P ,
SRT (E) ∈ C.

7

6 Example Inliner

In this section we give an algorithm for monitor inlin-
ing (from now on referred to as an inlining algorithm,
or simply an inliner) in the style of Erlingsson [15].
As previously mentioned, the developer is free to de-
cide what inlining strategy to use, so the algorithm
presented here serves merely as an example and does
for instance not include any optimizations. For the
implementation details and an example, we refer to
Appendix A.

The inliner traverses the instructions and replaces
each invoke instruction with a block of monitoring
code. This block of code first stores the method argu-
ments in local variables for use in post-actions. Then
the class hierarchy is traversed bottom up for virtual
call resolution, and when a match is found the rele-
vant clauses, guards, and updates are enacted. For
post-actions the main difference is in exception han-
dling; exceptions are rerouted for clause evaluation,
and then rethrown.

We refer to the method resulting from inlining a
methodM (program P) with a contract C as I(M, C)
(I(P, C)). The main correctness property we are after
for inlined code is contract compliance:

Theorem 2 (Inliner Correctness). The inlined pro-
gram I(P, C) adheres to C.

Proof. This follows from the fact that we are always
able to generate a valid adherence proof (theorem 4)
and that the existence of such adherence proof en-
sures contact adherence (theorem 3). (Both state-
ments are proved in later sections.)

7 The Ghost Monitor

The purpose of the ghost monitor is to keep track
of what the embedded monitor state should be at
key points during method execution. This provides a
useful reference for verification. Moreover, since the
ghost monitor assigns only to special ghost variables
that are invisible to the client program, and since it
is incapable of blocking, it does not in fact have any
observable effect on the client program.

The ghost monitor uses special assignments which
we refer to as ghost updates: Guarded multi-
assignment commands used for updating the state of
the ghost monitor and for storing method call argu-
ments and dynamic class identities in temporary vari-
ables. A ghost update has the shape 〈xg := e〉 where
x
g is a tuple of ghost variables, special variables used

only by the ghost monitor, and e is an expression of
matching type. Typically, e is a conditional of simi-
lar shape as the policy expressions, and e may men-
tion security state ghost variables as well as other
ghost variables holding security relevant call param-
eters. Given the post-condition AL+1, the weakest
pre-condition for the ghost instruction 〈xg := e〉 at
label L is wpM (L) = AL+1[e/x

g].

The ghost updates are embedded right before and
after each security relevant invoke instruction as well
as in an exception handler catching any exception
(Throwable) thrown by the invoke instruction and
nothing else. Note that the existence of such an ex-
ception handler is easily checked, and that the code
delivered by our inliner always has exception handlers
of this form. The details are presented in Figure 4.
A method M with ghost updates embedded, corre-
sponding to the security automaton of a contract C
is denoted by Ig(M, C).

Let Ig(M, C) be the result of embedding a ghost
monitor corresponding to contract C into M . The
key property of the ghost monitor is that the trace of
ghost monitor states in an execution E, is the same
as the states visited by the security automaton, given
SRT (E) as input. This is easily be shown by an
induction over the length of E.

Lemma 1. Let E = C0 . . . Ck be an execution of
Ig(P, C) and ms

g
i denote the ghost monitor state in

configuration Ci. If for all 0 ≤ i ≤ k, ms
g
i 6= ⊥, then

SRT (E) ∈ C.

Proof. Follows by induction on the length of the exe-
cution. For details we refer to the Coq formalization
[24].

8

L: 〈(tg, argsg1, . . . , args
g
n) := (sn, . . . , s0)〉

〈ms
g := tg : ck → δ(ms

g, (ck.m, argsg)↑)
...

| tg : c1 → δ(ms
g, (c1.m, argsg)↑)

| ms
g〉

invokevirtual c.m

〈ms
g := tg : ck → δ(ms

g, (ck.m, argsg, s0)
↓)

...
| tg : c1 → δ(ms

g, (c1.m, argsg, s0)
↓)

| ms
g〉

...

LHStart : 〈ms
g := tg : ck → δ(ms

g, (ck.m, argsg)⇓)
...

| tg : c1 → δ(ms
g, (c1.m, argsg)⇓)

| ms
g〉

Figure 4: Ghost updates induced by security automa-
ton (Q,Σ, δ, q0) for an invokation of c.m, where tg

is the target object, argsg represents the arguments
and c1 <: . . . <: ck denote all API-classes defining or
overriding m.

8 Contract Adherence Proofs

The key idea of a contract adherence proof is to
show that the embedded monitor statems of the pro-
gram Ig(P, C) and the ghost monitor state ms

g are
in agreement at certain program points. These points
certainly need to include all potentially security rel-
evant call and return sites. But, since we aim for a
procedural analysis, and to cater for virtual call res-
olution actually all call and return sites are included.
In fact, this is all that is needed, and hence:

Definition 6 (Adherence Proof). An adherence
proof for program P and contract C assigns to each
method M = (I,H) in Ig(P, C) an assertion ar-
ray A such that the extended method (I,H,A,ms =
ms

g,ms = ms
g) is locally valid.

Such an account has two main benefits which are
heavily exploited below:

• It leaves the choice of a particular proof genera-
tion strategy open.

• It opens for a lightweight approach to on-device
proof checking, by performing the local valid-
ity check on a program with a locally produced
ghost monitor.

Theorem 3 (Adherence Proof Soundness). If an ad-
herence proof exists for a program P and contract C,
then P adheres to C.

Proof. Assume Π is an adherence proof for a program
P and a contract C. By theorem 1 we know that
the corresponding extended program for Ig(P, C) is
globally valid. This implies that ms = ms

g at each
configuration that is calling (or returning from) a se-
curity relevant configuration. Furthermore, since the
⊥ value is an artifical “error” value of the security
automaton with no Java counterpart, we know that
if ms = ms

g, then ms
g 6= ⊥. Thus, by lemma 1,

SRT (E) ∈ C and therefore P adheres to C.

8.1 Example Proof Generation

The process of generating contract adherence proofs
is closely related to the process of embedding the ref-

9

erence monitor, thus the inlining and proof genera-
tion is preferrably done by the same agent. This sec-
tion describes how proofs may be generated for code
produced by the example inliner presented in Section
6.
The monitor invariant, ms = ms

g is set as each
methods pre- and post-condition. The assertion for
each specific instruction is generated differently, ac-
cording to whether the instruction appears as part
of an inlined block or not. Instructions inside the
inlined block affect the processing of the embedded
state, method call arguments etc. For this reason
these instructions need detailed analysis using the wp
function. Instructions outside the inlined blocks, on
the other hand, allow a more robust treatment, as
they are only required to preserve the monitor in-
variant which they do (see fact 1 in Appendix A).
The critical property of the annotation function is
the following:

Lemma 2. Given a method M = (I,H) of Ig(P, C)
and a set IL labelling the inlined instructions in I, an
array A of assertions can be computed such that the
extended method (I,H,A,ms = ms

g,ms = ms
g) is

locally valid.

Proof. A general construction is illustrated in Ap-
pendix B.

The array is constructed by annotating the return
instructions with the post-condition, and then in a
breadth first manner, annotate the preceeding in-
structions using the wp function in case of inlined
instructions and by using the monitor invariant in
other cases.

Theorem 4 (Proof Generation). For each program
P and contract C there is an algorithm, polynomial
in |P | + |C|, which produces an adherence proof of
I(P, C).

Proof. The algorithm described above treats each
method in isolation. The breadth first traversal of
the instructions takes time linearly proportional to
the size of the instruction array plus the number of
ghost updates. The resulting adherence proof is cor-
rect by construction.

As an example Figure 6 illustrates a generated
proof for a part of a program which has been inlined
to comply with the policy in Figure 5.

SCOPE Session

SECURITY STATE boolean haveRead = false;

BEFORE javax.microedition.rms.RecordStore

.openRecordStore(string name,

boolean createIfNecessary)

PERFORM

true -> { haveRead = true; }

BEFORE javax.microedition.io.Connector

.openDataOutputStream(string url)

PERFORM

haveRead == false -> { }

Figure 5: A ConSpec specification which disallows
the program from sending data over the network after
accessing phone memory.

8.2 Proof Recognition

Checking the validity of contract adherence proofs
involves verifying local validity, which in general is
undecidable. However, the problem is much simpli-
fied in our setup, since proofs apply to programs that
have already been inlined. Validity checking may still
be hard or impossible, however, due to the use of
primitive data types with difficult equational theo-
ries. For this reason the theorem below is restricted
to contracts over freely generated theories.

Theorem 5 (Efficient Recognition). The class of ad-
herence proofs generated from programs inlined with
contracts over a freely generated theory is recognizable
in polynomial time.

Proof. To verify the validity of a given adherence
proof we look at the requirements of definition 6.
Verifying that the pre- and post-conditions equal the
monitor invariant is a simple syntactic check and can
be done in time linearly proportional to the number
of methods in P .

10

.

.

.

40:{Ψ}
aload 1

inlined































































































































































41:{if(0 6= SS.haveRead, tt,

if(haveReadg = ff,Ψ,⊥ = SS.haveRead))}
astore 3

42:{if(0 6= SS.haveRead, tt,

if(haveReadg = ff,Ψ,⊥ = SS.haveRead))}
getstatic SS.haveRead

45:{if(0 6= s0, tt,
if(haveReadg = ff,Ψ,⊥ = SS.haveRead))}
iconst 0

46:{if(s0 6= s1, tt,
if(haveReadg = ff,Ψ,⊥ = SS.haveRead))}
if icmpne 52

49:{if(haveReadg = ff,Ψ,⊥ = SS.haveRead)}
goto 56

52:{tt}
iconst m1

55:{tt}
invokestatic System.exit

56:{if(haveReadg = ff,Ψ,⊥ = SS.haveRead)}
aload 3

{if(haveReadg = ff,Ψ,⊥ = SS.haveRead)}
〈haveReadg := haveReadg = ff → haveRead g〉

71:{Ψ}
invokestatic

Connector.openDataOutputStream

74:{Ψ}
astore 2

.

.

.

Figure 6: Generated assertions for inlining of
Connector.openDataOutputStream where Ψ de-
notes the monitor invariant.

For the requirement of local validity, it is sufficient
to check that the verification conditions 1 and 2 from
definition 3 can be rewritten to tt in time polynomial
in the size of the instruction array. The interesting
verification conditions are those of the form AL ⇒
wpM (L) where L is the label of the first instruction
in an inlined block. AL is, in this case, of the form
ms = ms

g ∧ ag
0 = a0 = s0 ∧ . . .∧ ag

m = am = sm and
wpM (L) is of the form

select((t : cn ∧ tg : cn, . . . , t : c1 ∧ tg : c1),

(select((cn.mG1
∧ cn.mg

G1
, . . . , cn.mGi

∧ cn.mg
Gi
),

(cn.mf1(ms, a) = cn.mg
f1
(ms

g, ag), . . . ,

cn.mfi(ms, a) = cn.mg
fi
(ms

g, ag)), tt),
...

...
select((c1.mG1

∧ c1.mg
G1
, . . . , c1.mGj

∧ c1.mg
Gj

),

c1.mf1(ms, a) = c1.mg
f1
(ms

g, ag), . . . ,

c1.mfj (ms, a) = c1.mg
fj
(ms

g, ag)), tt)),

ms = ms
g)

The verification condition can then be rewritten
and simplified by iterated applications of the rule
x = y ⇒ φ −→ φ[z/x][z/y] where x and y are in-
stantiated with real variables and ghost counterparts
respectively and where z does not occur in φ. These
rewrites can be performed in time proportional to
the length of the formula and does not increase the
size of the expression since x, y and z are atomic.
The result can then be rewritten to tt using the rules
(ψ ⇒ φ) ∧ (¬ψ ⇒ φ) −→ φ and φ = φ −→ tt in time
polynomial in the size of the formula.
All other verification conditions (preM ⇒ A0,

AL ⇒ wpM (L) for all labels L except those of the
first instructions in an inlined block are trivial as their
antecedents and succeedents are identical.

9 Implementation and Evalua-

tion

A full implementation of the framework, includ-
ing a Java SE proof generator, a Java ME
client, instructions and examples is available at
www.csc.kth.se/~landreas/irm_pcc. Both the on-
and the off-device software utilize a parser generated
by CUP / JFlex [19, 21] and the ASM library [27] for
handling class files. Table 2 summarizes overhead for
inlining, proof generation and load-time proof recog-
nition on two example applications and policies:

• MobileJam: A GPS based traffic jam reporter
which utilizes the Yahoo! Maps API.
Policy: Only connect to
http://local.yahooapis.com.

• Snake: A classic game of snake in which the
player may submit current score to a server.

11

www.csc.kth.se/~landreas/irm_pcc
http://local.yahooapis.com

MobileJam Snake
Security Relevant Invokes 4 2
Original Size 428.0 kb 43.7 kb
Size increase for IRM 4.8 kb 1.1 kb
Size increase for Proofs 20.6 kb 2.6 kb
Inlining 10.1 s 8.6 s
Proof Generation 4.7 s 0.8 s
Proof Recognition 98 ms 117 ms

Table 2: Benchmarks for the two case studies.

Policy: Do not send data over network after
reading from phone memory.

Inlining and proof generation was performed on an
Intel Core 2 CPU at 1.83 GHz with 2 Gb memory and
proof recognition was performed on a Sony-Ericsson
W810i. The implementation is to be considered a
prototype, and very few optimizations in terms of
e.g. proof size have been implemented.

10 Conclusions

We have demonstrated the feasibility of a proof-
carrying approach to certified monitor inlining at the
level of practical Java bytecode, including exceptions
and inheritance. This answers partially a question
raised by K. W. Hamlen et al. [18].

We have proved correctness of our approach in
the sense of soundness: Contract adherence proofs
are sufficient to ensure compliance. This soundness
proof has been formalized [24] in Coq. We also ob-
tain partial completeness results, namely that proofs
for inlined programs can always be generated, and
such proofs are guaranteed to be recognized at pro-
gram loading time, at least when contracts do not use
equational tests that are too difficult. Other prop-
erties are also interesting such as transparency [29],
roughly, that all adherent behaviour is preserved by
the inliner. This type of property is, however, more
relevant for the specific inliner, and not so much for
the certification mechanism, and consequently not
addressed here (but see e.g. [23, 34, 10, 9] for results
in this direction).
The approach is efficient: Proofs are small and

recognised easily, by a simple proof checker. An
interesting feature of our approach is that detailed
modelling of bytecode instructions is needed only for
instructions appearing in the inlined code snippets.
For other instructions a simple conditional invari-
ance property on static fields of final objects suf-
fices. This means, in particular, that our approach
adapts to new versions of the Java virtual machine
very easily, needing only a check that the static field
invariance is maintained. Worth pointing out also is
that the enforcement architecture can be realized in a
way which is backwards compatible, in the sense that
PCC-aware client programs can be executed without
modification in a PCC-unaware host environment.

It is possible to extend our framework to multi-
threading by protecting security relevant updates
with locks, either locking the entire inlined block or
releasing the lock during the security relevant call it-
self for increased parallellism. For proof generation
the main upshot is that assertions must be stable
under interference by other threads. Briefly, this re-
quires the ability to protect fields, such as those in the
security state class, with locks by only allowing up-
dates of these fields when the lock has been acquired.
The validity of an assertion may then only depend
on fields protected by locks that has been acquired
at that point in the code. This work is currently in
progress.

References

[1] Irem Aktug, Mads Dam, and Dilian Gurov.
Provably correct runtime monitoring. In FM ’08:
Proceedings of the 15th international symposium
on Formal Methods, pages 262–277. Springer-
Verlag, 2008.

[2] Irem Aktug and Katsiaryna Naliuka. ConSpec –
a formal language for policy specification. Elec-
tronic Notes in Theoretical Computer Science,
197(1):45–58, 2008.

[3] F. Y. Bannwart and P. Müller. A logic for
bytecode. In Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE),

12

volume 141-1 of Electronic Notes in Theoreti-
cal Computer Science, pages 255–273. Elsevier,
2005.

[4] Gilles Barthe, Pierre Crégut, Benjamin
Grégoire, Thomas P. Jensen, and David
Pichardie. The MOBIUS Proof Carrying Code
Infrastructure. In FMCO, pages 1–24, 2007.

[5] L. Bauer, J. Ligatti, and D. Walker. Compos-
ing security policies with Polymer. In Proceed-
ings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
(PLDI), 2005.

[6] Lujo Bauer, Jarred Ligatti, and David Walker.
Types and effects for non-interfering program
monitors. In M. Okada, B. Pierce, A. Scedrov,
H. Tokuda, and A. Yonezawa, editors, Soft-
ware Security—Theories and Systems. Mext-
NSF-JSPS International Symposium, volume
2609 of Lecture Notes in Computer Science,
pages 154–171. Springer, 2003.

[7] N. Bielova, N. Dragoni, F. Massacci, K. Naliuka,
and I. Siahaan. Matching in security-by-contract
for mobile code. Journal of Logic and Algebraic
Programming, 78(5):340 – 358, 2009.

[8] Feng Chen. Java-MOP: A monitoring oriented
programming environment for Java. In In Pro-
ceedings of the Eleventh International Confer-
ence on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS, pages
546–550. Springer, 2005.

[9] Mads Dam, Bart Jacobs, Andreas Lundblad,
and Frank Piessens. Security monitor inlining for
multithreaded Java. In ECOOP 2009 - Object-
Oriented Programming, 23rd European Confer-
ence, Genova, Italy, July 6-10, 2009, Proceed-
ings,, pages 546–569. Springer-Verlag, 2009.

[10] Mads Dam, Bart Jacobs, Andreas Lundblad,
and Frank Piessens. Provably correct inline mon-
itoring for multithreaded Java-like programs.
Journal of Computer Security, 18:37 – 59, 2010.

[11] Robert DeLine and Manuel Fähndrich. Enforc-
ing high-level protocols in low-level software. In
PLDI ’01: Proceedings of the ACM SIGPLAN
2001 conference on Programming language de-
sign and implementation, pages 59–69. ACM,
2001.

[12] Lieven Desmet, Wouter Joosen, Fabio Massacci,
Pieter Philippaerts, Frank Piessens, Ida Sia-
haan, and Dries Vanoverberghe. Security-by-
Contract on the .NET platform. Information
Security Technical Report, 13(1):25–32, 2008.

[13] Ú. Erlingsson. The inlined reference monitor ap-
proach to security policy enforcement. PhD the-
sis, Dep. of Computer Science, Cornell Univer-
sity, 2004.

[14] Ú. Erlingsson and F. B. Schneider. IRM enforce-
ment of Java stack inspection. In IEEE Sympo-
sium on Security and Privacy, page 0246. IEEE
Computer Society, 2000.

[15] Ú. Erlingsson and F. B. Schneider. SASI en-
forcement of security policies: a retrospective.
In Proc. Workshop on New Security Paradigms
(NSPW ’99), pages 87–95. ACM Press, 2000.

[16] D. Evans and A. Twyman. Flexible policy-
directed code safety. In IEEE Symposium on
Security and Privacy, pages 32–45, 1999.

[17] Yoonsik Cheon Gary T. Leav-
ens. Design by Contract with JML.
http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf,
2006.

[18] K. W. Hamlen, G. Morrisett, and F. B. Schnei-
der. Certified in-lined reference monitoring on
.net. In Proc. of the ACM SIGPLAN Workshop
on Programming Languages and Analysis for Se-
curity (PLAS’06), June 2006.

[19] Scott Hudson. Cup.
http://www2.cs.tum.edu/projects/cup/,
March 2003.

[20] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-MaC: A run-time assur-
ance tool for Java programs. Electronic Notes in

13

http://www.eecs.ucf.edu/~leavens/JML/jmldbc.pdf
http://www2.cs.tum.edu/projects/cup/

Theoretical Computer Science, 55(2):218 – 235,
2001. RV’2001, Runtime Verification (in connec-
tion with CAV ’01).

[21] Gerwin Klein. JFlex. http://jflex.de/, Oc-
tober 2007.

[22] J. Ligatti, L. Bauer, and D. Walker. Edit au-
tomata: Enforcement mechanisms for run-time
security policies. International Journal of Infor-
mation Security, 4(1–2):2–16, 2005.

[23] J. A. Ligatti. Policy Enforcement via Program
Monitoring. PhD thesis, Princeton University,
2006.

[24] Andreas Lundblad. Coq-formalization of the
security theorems of the IRM / PCC approach.
http://www.csc.kth.se/~landreas/irm_pcc/coq,
2010.

[25] K. Naliuka N. Dragoni, F. Massacci and I. Sia-
haan. Security-by-contract: Toward a semantics
for digital signatures on mobile code. In Proc.
4th European PKI Workshop, volume 4582 of
Lecture Notes in Computer Science, pages 297–
312. Springer, 2007.

[26] G. C. Necula. Proof-carrying code. In POPL
’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of program-
ming languages, pages 106–119. ACM Press,
1997.

[27] ObjectWeb. ASM web page.
http://asm.objectweb.org/, February 2008.

[28] Project web page. http://www.s3ms.org, 2008.

[29] J. H. Saltzer and M. D. Schroeder. The protec-
tion of information in computer systems. Pro-
ceedings of the IEEE, 63(9):1278–1308, 1975.

[30] F. B. Schneider. Enforceable security policies.
ACM Trans. Infinite Systems Security, 3(1):30–
50, 2000.

[31] Christian Skalka and Scott Smith. History ef-
fects and verification. In Asian Programming
Languages Symposium, 2004.

[32] Meera Sridhar and Kevin W. Hamlen. Action-
script in-lined reference monitoring in prolog. In
PADL, pages 149–151, 2010.

[33] Meera Sridhar and Kevin W. Hamlen. Model
checking in-lined reference monitors. In Verifi-
cation, Model Checking, and Abstract Interpre-
tation, pages 312–327, 2010.

[34] Dries Vanoverberghe and Frank Piessens. Se-
curity enforcement aware software development.
Inf. Softw. Technol., 51(7):1172–1185, 2009.

[35] David Walker. A type system for expressive se-
curity policies. In POPL ’00: Proceedings of
the 27th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages
254–267. ACM, 2000.

[36] Bennet Yee, David Sehr, Gregory Dardyk,
J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Ful-
lagar. Native Client: A Sandbox for Portable,
Untrusted x86 Native Code. Security and Pri-
vacy, IEEE Symposium on, 0:79–93, 2009.

14

http://jflex.de/
http://www.csc.kth.se/~landreas/irm_pcc/coq
http://asm.objectweb.org/
http://www.s3ms.org

A Implementation of the Ex-

ample Inliner

Our inliner lets the state of the embedded security
monitor be represented by a static field ms of a fi-
nal security state class, named to avoid clashes with
classes in the target program. This choice of repre-
sentation relies on the following fact of JVM execu-
tion and allows for our open-ended treatment of large
parts of the instruction set.

Fact 1. Suppose c is final and f is static. If
C = (h, (M, pc, s, r) :: R) →JVM C′ and M [pc] 6=
putstatic c.f , then ‖c.f‖C = ‖c.f‖C′.

In other words, the only instruction which can af-
fect the value stored in a static field f of a final class c
is an explicit assignment to c.f . In particular, the as-
sumption ensures that instructions originating from
the target program are unable to affect the embedded
monitor state.
For simplicity we assume (without loss of general-

ity) that ConSpec policies initialize the security state
variables to the default Java values.
Each invokevirtual c.m instruction is replaced

by a block of inlined code that evaluates which con-
crete method is being invoked, then checks and up-
dates the security state accordingly. We assume for
simplicity that no instructions in a block of inlined
code other than athrow will raise exceptions. The
code is easily adapted at the cost of some additional
complexity to take runtime exceptions violating this
assumption into account.
Figure 7 shows a schematic policy for a method

m : int → int defined in class a c and overridden in a
subclass d. The policy has event clauses for before,
after and exceptional cases for each definition of
m, each with two guards and two statement lists.
Figure 8 gives the inlining details for the policy

schema in Figure 7. In the figure, each [EVALUATE g]
section transforms a configuration (h, (M,pc, s, r) ::
R) to (h, (M,pc′, v :: s, r) :: R) where v is 0 or 1 if
the guard g is false or true respectively. An [EXECUTE

stmts] transforms the configuration (h, (M,pc, s, r) ::
R) to (h[JstmtsK(ms)/ms], (M, pc′, s, r) :: R).
The remaining invoke instructions (invokestatic,

SCOPE Session
SECURITY STATE int ms = 0;

BEFORE c.m(int a) PERFORM cbg1 -> {cbs1} | cbg2 -> {cbs2}

AFTER r = c.m(int a) PERFORM cag1 -> {cas1} | cag2 -> {cas2}

EXCEPTIONAL c.m(int a) PERFORM ceg1 -> {ces1} | ceg2 -> {ces2}

BEFORE d.m(int a) PERFORM dbg1 -> {dbs1} | dbg2 -> {dbs2}

AFTER r = d.m(int a) PERFORM dag1 -> {das1} | dag2 -> {das2}

EXCEPTIONAL d.m(int a) PERFORM deg1 -> {des1} | deg2 -> {des2}

Figure 7: Schematic ConSpec policy

invokeinterface and invokespecial) can be han-
dled similarly.

15

tArgs: astore ra deFail: iconst 1

astore rt inv static Sys.exit

aload rt ceChk: aload rt

aload ra instanceof c

dbChk: aload rt ifeq EEnd

instanceof d ceGrd1: [EVALUATE ceg1]

ifeq cbChk ifeq ceGrd2

dbGrd1: [EVALUATE dbg1] [EXECUTE ces1]

ifeq dbGrd2 goto EEnd

[EXECUTE dbs1] ceGrd2: [EVALUATE ceg2]

goto BEnd ifeq ceFail

dbGrd2: [EVALUATE dbg2] [EXECUTE ces2]

ifeq dBFail goto EEnd

[EXECUTE dbs2] ceFail: iconst 1

goto BEnd inv static Sys.exit

dBFail: iconst 1 EEnd: athrow

inv static Sys.exit hdlEnd: aload rt

cbChk: aload rt instanceof d

instanceof c ifeq caChk

ifeq BEnd daGrd1: [EVALUATE dag1]

cbGrd1: [EVALUATE cbg1] ifeq daGrd2

ifeq cbGrd2 [EXECUTE das1]

[EXECUTE cbs1] goto AEnd

goto BEnd daGrd2: [EVALUATE dag2]

cbGrd2: [EVALUATE cbg2] ifeq daFail

ifeq cbFail [EXECUTE das2]

[EXECUTE cbs2] goto AEnd

goto BEnd daFail: iconst 1

cbFail: iconst 1 inv static Sys.exit

inv static Sys.exit caChk: aload rt

BEnd: invokevirtual c.m instanceof c

goto hdlEnd ifeq AEnd

hdlStrt: aload rt caGrd1: [EVALUATE cag1]

instanceof d ifeq caGrd2

ifeq ceChk [EXECUTE cas1]

deGrd1: [EVALUATE deg1] goto AEnd

ifeq deGrd2 caGrd2: [EVALUATE cag2]

[EXECUTE des1] ifeq caFail

goto EEnd [EXECUTE cas2]

deGrd2: [EVALUATE deg2] goto AEnd

ifeq deFail caFail: iconst 1

[EXECUTE des2] inv static Sys.exit

goto EEnd AEnd:

Figure 8: Schematic inlining of policy in Figure 7

16

B Proof of Lemma 2

Figure 10 shows the construction for a call of a
method m : int → int in class c, under the
schematic contract shown in Figure 9. We assume
that an exception thrown by the invoked method is
matched by an exception handler table entry on the
form (30, 32, 34, any). For brevity we let σbef , σaft
and σexc denote the appropriate substitution for the
effect of updating ms according to the before, after
and exceptional clause of c.m respectively. For in-
stance, if befs denotes ms = ms * x; ms = ms - 5,
then σbef is [(ms · x)− 5/ms].

SCOPE Session

SECURITY STATE DECLARATION

BEFORE c.m(int a) PERFORM befg -> {befs}

AFTER r = c.m(int a) PERFORM aftg -> {afts}

EXCEPTIONAL c.m(int a) PERFORM excg -> {excs}

Figure 9: Schema contract for the proof of Lemma 2.

ms = ms
g

NON-INLINED INSTRUCTION

// INLINED CODE START

ms = ms
g

ASTORE a
ASTORE t

ALOAD t
ALOAD a

// BEFORE

26: if(t : c, A28, A30)
ALOAD t
INSTANCEOF c

IFEQ 30

28: if(befg , if(s1 : c, if(befg ,msσbef (a) = ms
gσbef (s0),msσbef = ⊥),

ms = ms
g) ∧ a = s0 ∧ t = s1, tt)

[EVALUATE befg]
IFEQ 29

[PERFORM befs]
GOTO 30

29: tt

ICONST 1

INVOKESTATIC System.exit

30: if(s1 : c, if(befg ,ms = ms
gσbef (s0),ms = ⊥),ms = ms

g) ∧
a = s0 ∧ t = s1

〈(tg, ag) := (s1, s0)〉

〈ms
g := tg : c → δ(ms

g, (c.m, ag)↑) | ms
g〉

ms = ms
g ∧ a = ag ∧ t = tg

INVOKEVIRTUAL c.m(int) : int

32: ms = ms
g ∧ a = ag ∧ t = tg

〈rg := s0〉

〈ms
g := tg : c → δ(ms

g, (c.m, ag, rg)↓) | ms
g〉

A43[r/s0]
ASTORE r
ALOAD r

A43

GOTO 43

// EXCEPTIONAL

34: ms = ms
g ∧ a = ag ∧ t = tg

〈ms
g := tg : c → δ(ms

g, (c.m, ag)⇓) | ms
g〉

38: if(t : c, A40, A42)
ALOAD t

INSTANCEOF c
IFEQ 42

40: if(excg ,msσexc(a) = ms
g , A41)

[EVALUATE excg]
IFEQ 41

[PERFORM excs]
GOTO 42

41: tt

ICONST 1

INVOKESTATIC System.exit

42: ms = ms
g

ATHROW

// AFTER

43: if(t : c, A44, A46)
ALOAD t

INSTANCEOF c
IFEQ 46

44: if(aftg ,msσaft (r, a) = ms
g , tt)

[EVALUATE aftg]
IFEQ 45

[PERFORM afts]
GOTO 46

45: tt

ICONST 1

INVOKESTATIC System.exit

// INLINING END

46: ms = ms
g

NON-INLINED INSTRUCTION

Figure 10: Schematic annotation for contract dis-
played Figure 9

17

	1 Introduction
	1.1 Related Work
	1.2 Overview of the Paper

	2 Program Model
	3 Assertions
	4 Extended Method Definitions
	5 Security Specifications
	5.1 Security Automata

	6 Example Inliner
	7 The Ghost Monitor
	8 Contract Adherence Proofs
	8.1 Example Proof Generation
	8.2 Proof Recognition

	9 Implementation and Evaluation
	10 Conclusions
	A Implementation of the Example Inliner
	B Proof of Lemma ??

