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Inline reference monitoring is a powerful technique to enforce security policies on untrusted programs.
The security-by-contract paradigm proposed by the EU FP6 S3MS project uses policies, monitoring, and
monitor inlining to secure third-party applications running on mobile devices. The focus of this paper
is on multi-threaded Java bytecode. An important consideration is that inlining should interfere with the
client program only when mandated by the security policy. In a multi-threaded setting, however, this
requirement turns out to be problematic. Generally, inliners use locks to control access to shared resources
such as an embedded monitor state. This will interfere with application program non-determinism due to
Java’s relaxed memory consistency model, and rule out the transparency property, that all policy-adherent
behaviour of an application program is preserved under inlining. In its place we propose a notion of
strong conservativity, to formalise the property that the inliner can terminate the client program only
when the policy is about to be violated. An example inlining algorithm is given and proved to be strongly
conservative. Finally, benchmarks are given for four example applications studied in the S3MS project.
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1. Introduction

Program monitoring is a well-established and efficient approach to prevent po-
tentially misbehaving software clients from causing harm, for instance by violating
system integrity properties, or by accessing data to which the client is not entitled.
Potentially dangerous actions by a client program are intercepted and routed to a pol-
icy decision point (pdp) in order to determine whether the actions should be allowed
to proceed or not. In turn, these decisions are routed to a policy enforcement point
(pep), responsible for ensuring that only policy-compliant actions are executed.
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The Security of Software and Services for Mobile Systems (S3MS) project has
investigated the use of such program monitors for ensuring the security of commu-
nicating mobile applications. This paper focuses on one of the key scientific results
of the S3MS project: the design and implementation of inlined reference monitors in
multithreaded Java.

The idea of monitor inlining is to push policy decision and enforcement func-
tionality into the client programs themselves, by embedding a security state into the
client program, and using code rewriting to ensure this embedded state is correctly
queried and updated at the appropriate points. When applicable, such an approach
has a number of advantages:

• Overhead for marshalling and demarshalling policy information between the
various decision and enforcement points in the system is eliminated.

• All information needed for policy enforcement is directly available to the pdp
and the pep.

• Extensions to the trusted computing base (tcb) needed for policy enforcement
are localized to the client code.

• By proving the inliner correct, in the sense that it enforces the policy correctly,
and that it interferes with program execution only when necessary, the need for
extensions (trust) can to a large extent be eliminated.

The starting point for much previous work on monitor inlining has been security
automata in the style of Schneider [21]. The PoET/PSLang toolset by Erlingsson
[9] implements monitor inlining for Java. That work represents security automata
directly in terms of Java code snippets, making it difficult to formally prove cor-
rectness properties of the approach. As an alternative we propose to use a dedicated
policy specification language ConSpec [2], similar to PSLang, but more constrained
in order to allow for a decidable containment problem. The ConSpec language, in
particular, is designed to monitor only accesses to some specific API, determined by
the application program under consideration.

Formal correctness of inlining for the case of sequential bytecode has been exam-
ined in [1] for Java, and in [23] for .NET. In particular, [1] shows how to generate
bytecode level specification annotations under rather modest assumptions on the in-
liner, by fixing control points immediately before and after each method call at which
the embedded state must be correctly updated.

Other recent work on monitoring and monitor inlining includes work on edit au-
tomata [3,14,15], security automata that go beyond pure monitoring, as truncations
of the event stream, to allow also event insertions, for instance to recover gracefully
from policy violations. Type-based approaches for security policy enforcement have
been considered by a number of authors, e.g. [4,10,22,24]. Directly related to the
work reported here is the type-based Mobile system due to Hamlen et al. [12]. The
Mobile system uses a simple library extension to Java bytecode to help managing
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updates to the security state. The use of linear types allows a type system to localize
security-relevant actions to objects that have been suitably unpacked, and the type
system can then use this property to check for policy compliance.

Our contribution is to propose correctness criteria for monitor inlining in the case
of multi-threaded bytecode programs, and to formally prove correctness for an exam-
ple inliner. In particular we address the implications of relaxed memory consistency
models in intermediate bytecode languages such as JVML and MSIL. This turns out
to be non-trivial, since locks introduced by the inliner to control access to shared
resources such as the embedded security state will in general interfere with appli-
cation program nondeterminism, and rule out the transparency property [14], that
all policy-adherent behaviour of an application program is preserved under inlining.
In its place we propose a notion of strong conservativity, to formalise the property
that any complete trace of an inlined program is either a policy-compliant complete
trace of the uninlined program, or else it is the truncation of a trace of the uninlined
program at the point of policy violation.

The paper is structured as follows. In Section 2 we survey the S3MS project con-
text, and briefly introduce the ConSpec language. In Section 3 we present those parts
of a model for multi-threaded Java bytecode execution needed to understand the rest
of the paper, in particular the concepts of legal execution and observable trace, and
we discuss the treatment of API calls. Section 4 briefly introduces security automata,
to pin down the key concept of policy compliance. Section 5 present the main re-
sults of the paper: Correctness criteria, example inliner, and the correctness proof.
Section 6 gives benchmark results for 4 sample mobile applications, and Section 7
concludes.

2. Security by contract

The key objective of the S3MS project [20] is the creation of a framework and tech-
nological solutions for trusted deployment and execution of communicating mobile
applications in heterogeneous environments. A contract-based security mechanism
lies at the core of the framework [5,7].

Application contracts specify the security behaviour of mobile applications, and
can be matched with device policies specifying acceptable behaviour of applications
on the device.

This section provides a brief summary of the security-by-contract (SxC) paradigm
developed in the S3MS project. We start by analyzing the requirements for a secu-
rity architecture for mobile applications and services, and go on to discuss how the
SxC paradigm fulfills these requirements. Then we discuss how monitor inlining fits
in this picture, and we show that the contribution of this paper – provably correct
monitor inlining for multithreaded Java – is an essential ingredient of SxC.
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2.1. Security for mobile applications and services

Mobile phones and personal digital assistants have evolved over the past years
to become general purpose computation platforms. Many of these devices support
downloading third party applications built on either the .NET Compact Framework,
or Java Micro Edition. However, supporting applications from potentially untrust-
worthy sources comes with a serious risk: malicious or buggy applications on a
phone can lead to denial of service, loss of money, leaking of confidential infor-
mation on the device and so forth.

Current devices already provide certain countermeasures against these threats,
with support for sandboxing and code signing. The key idea is that unsigned code
is severely limited in what it can do on the device, i.e. it runs in a strict sandbox.
Code that is signed by a trusted party can break out of the sandbox. The device has a
keystore that contains the public keys of trusted parties.

This security model has a number of drawbacks. First, it is not flexible: applica-
tions either run in a restricted sandbox, or have full power. Many interesting types
of applications can not run in a sandbox. Examples of case studies considered in the
S3MS project include:

• multiplayer games, where communication between the players and/or a game
server is essential,

• a traffic jam reporter, that interacts with the GPS device and that sends and
receives traffic information to a server,

• social networking applications, where users can track the location of their
friends on their mobile device.

None of these case studies can function in a sandbox. On the other hand, the risk of
giving full power to third party applications is substantial.

A second disadvantage of the current security model is that no precise meaning
is associated with the signatures of trusted third parties: a signature either means
that the application comes from the software factory of the signatory or that the
signatory vouches for the software, but there is no clear definition of what guarantees
it offers. Hence, device owners trust the third party both for (a) appropriate vetting
of applications, and (b) using a suitable notion of good behavior. Incidents [19] show
that the current security model is inappropriate.

2.2. Application contracts and policies

The SxC paradigm addresses the shortcomings of the current mobile device secu-
rity model.

A key ingredient is the notion of an application security contract. Such a contract
specifies the security behavior of the application. Technically, a contract is a secu-
rity automaton in the sense of Schneider [21], and it specifies an upper bound on
the security-relevant behavior of the application: the sequences of security-relevant



M. Dam et al. / Inline monitoring for multithreaded Java-like programs 41

events that an application can generate are all in the language accepted by the secu-
rity automaton.

Mobile devices are equipped with a security policy, a security automaton that spec-
ifies the behavior that is considered acceptable by the device owner. The key task of
the S3MS device run-time environment is to ensure that all applications will com-
ply with the device security policy. To achieve this, the run-time can make use of
the contract associated with the application (if it has one), and of a variety of policy
enforcement technologies:

• monitor inlining, a program rewriting technique to ensure that a program com-
plies with a given policy,

• contract-policy matching [17], the process of checking whether the security be-
haviour specified in a contract is a subset of the allowed security behaviour
specified in a policy,

• explicit run-time monitoring for compliance with policies.

All these enforcement technologies can run on-device. Some of them (matching and
inlining) can also be provided as a web service that the device can call during the
installation of an application on the device.

An application contract is a statement about the behavior of an application, and
there is no a-priori guarantee that this statement is correct. Testing and static analysis
can be used at development time to increase confidence in the contract. In addition,
monitor inlining of the contract at development time can provide strong assurance
of compliance.

If the device makes security decisions based on the contract (for instance when
it uses contract-policy matching), then there is a clear need to transfer these
development-time guarantees to the device that will eventually execute the appli-
cation. Without a secure transfer of these guarantees, it would be easy for an attacker
to modify either the application or the contract. Two key technologies support this
transfer:

1. A cryptographic signature by a trusted third party can vouch for application-
contract compliance. Note the difference with the use of signatures in the tra-
ditional mobile device security model. In the S3MS approach, a signature has a
clear semantics: the third party claims that the application respects the supplied
contract [8]. Moreover, what is important is the fact that the decision whether
the contract is acceptable or not remains with the end user.

2. Proof-carrying-code techniques can be used, to enable verification on the mo-
bile device of contract compliance proofs constructed by the program devel-
oper. Building on [1], we have realized such a framework for sequential Java,
and a publication about this is in preparation.

2.3. Example: Mobile 2-player chess

As an example application (also used as a case study in the S3MS project), we
consider a two-player chess game running on the .NET Compact Framework. This
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SECURITY STATE
int bytesSent = 0;
int smsSent = 0;

BEFORE System.Net.Sockets.Socket.Send(byte[] array)
PERFORM
array.Length == 20 && bytesSent + array.Length <= 2000 ->

AFTER int sent = System.Net.Sockets.Socket.Send(byte[] array)
PERFORM
true -> bytesSent += sent;

BEFORE Microsoft.WindowsMobile.PocketOutlook.SmsMessage.Send()
PERFORM
smsSent <= 100 ->

AFTER Microsoft.WindowsMobile.PocketOutlook.SmsMessage.Send()
PERFORM
true -> smsSent += 1;

Fig. 1. A ConSpec contract for the chess game.

application supports standalone games (where two players play chess against each
other on the same device), as well as games between two devices communicating
over either a TCP/IP network, or using text messages (SMSs). Chess games rarely
take more than 70 moves per player to finish, and the chess program enforces a hard
upper limit of 100 moves. As a consequence, the program’s contract can specify hard
upper bounds on its use of communication resources. One move either takes 20 bytes
of TCP traffic, or 1 SMS. Hence, one run of the program will consume at most 2000
bytes of network traffic, and send at most 100 SMS messages. The contract in Fig. 1
specifies this.

The contract is expressed in the ConSpec policy language [2]. A ConSpec speci-
fication tells when and with what arguments an API method may be invoked. If the
specification has one or more constraints on a method, the method is said to be a
security relevant method (srm).

The first part of the contract declares the security state. This security state contains
a definition of all the variables that will be used in the contract, and defines the
set of states of the corresponding security automaton. In the example contract, two
state variables maintain (1) the number of bytes that have already been sent over the
network, and (2) the number of SMS messages that have been sent.

The security state declaration is followed by one or more clauses. Each clause rep-
resents a rule on a security-relevant API method call. These rules can be evaluated
before the method is called, after the method is called, or when an exception oc-
curs. A clause definition consists of the “BEFORE”, “AFTER” or “EXCEPTIONAL”
keyword, the signature of the method on which the rule is defined, and a list of
guard/update blocks. The guard is a boolean expression that is evaluated when a rule
is being processed. The guard may mention variables from the security state declara-
tion, arguments given in the method call and the return value (if it is part of an after
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SECURITY STATE
int bytesSent = 0;

BEFORE System.Net.Sockets.Socket.Send(byte[] array)
PERFORM
bytesSent + array.Length <= 10000 ->

AFTER int sent = System.Net.Sockets.Socket.Send(byte[] array)
PERFORM
true -> bytesSent += sent;

Fig. 2. An example device policy.

clause). If the guard evaluates to true, the corresponding update block is executed.
All state changes that should occur can be incorporated in this update block. When a
guard evaluates to true, the evaluation of the following guards (and consequently the
potential execution of their corresponding update blocks) is skipped.

If none of the guards evaluates to true, this means the contract does not allow the
method call. For example, in Fig. 1, if the current state of the policy has bytesSent
= 2000, then a call to the Send method with an array of length 20 will fail all the
guards.

Note that the contract can be quite specific about the behavior of the application.
For instance, the example contract specifies explicitly that the application will only
send messages consisting of 20 bytes over the TCP/IP network. The contract also
encodes the upper bound of 100 moves enforced by the application.

The contract in Fig. 1 matches with a device policy that limits network traffic to
(for instance) 10 kilobytes. Such a policy is shown in Fig. 2. Note the differences
between the contract and the policy: while both are written in ConSpec, and both
semantically correspond to security automata, the device policy for instance does
not make any assumptions about the size of messages sent (beyond the fact that the
total size of traffic is limited to 10k).

For the remainder of the paper we focus on inlining of policies in multi-threaded
Java bytecode. But, the techniques are equally applicable to contracts (instead of
policies) and to .NET (instead of Java) [6].

3. Program model

We assume that the reader is familiar with Java bytecode syntax, the Java Virtual
Machine (JVM), and formalisations of the JVM such as [11]. Here, we only present
components of the JVM that are essential for the definitions in the rest of the text.
A few simplifications have been made in the presentation. In particular, to ease no-
tation a little we ignore issues concerning overloading.
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Classes, types and methods

We use c for class names and m for method names. To simplify notation, method
overloading is not considered, so a method is uniquely identified by a method ref-
erence of the form M = c.m. A method definition is a pair (I , H) consisting of an
instruction array I and an exception handler array H . We use the notation M [L] = ι
to indicate that IL is defined and equal to the instruction ι. The exception handler
array H is a partial map from integer indices to exception handlers. An exception
handler (b, e, t, c) catches exceptions of type c and its subtypes raised by instructions
in the range [b, e) and transfers control to address t, if it is the topmost handler that
covers the instruction for this exception type.

Configurations and transitions

A configuration C = (h, Λ, Θ) of the JVM consists of a heap h, a lock map Λ,
and a thread configuration map Θ which maps a thread identifier tid to its thread
configuration Θ(tid) = θ. A thread configuration θ is a stack R of activation records.
For normal execution, the activation record at the top of an execution stack has the
shape (M , pc, s, r), where:

• M is a reference to the currently executing method.
• The program counter pc is an index into the instruction array of M .
• The operand stack s ∈ Val∗ is the stack of values currently being operated on.
• r is an array of registers, or local variables. These include the parameters.

We assume a transition relation →JVM on JVM configurations. A thread configura-
tion of the shape θ = (M , pc, s, r) :: R is calling, if M [pc] is an invoke instruction,
and it is returning normally, if M [pc] is a return instruction. For exceptional con-
figurations the top frame has the form (b) where b is an exception object, i.e. an
object of class Throwable. Such a configuration is called exceptional. We say that θ
is returning exceptionally if θ is exceptional, and if (h, Λ, θ) →tid (h′, Λ′, θ′) implies
that θ′ is exceptional as well. I.e. the normal frame immediately succeeding the top
exceptional frame in θ is popped in θ′, if θ′ is exceptional as well.

Programs and types

For the purpose of this paper we can view a program P as a collection of class
declarations determining types of fields and methods belonging to classes in P . An
execution E of a program P is a (possibly infinite) sequence of JVM configurations
C0C1 . . . where C0 is an initial configuration consisting of a single thread with a
single, normal activation record with an empty stack, no local variables, M as a
reference to the main method of P and for each i � 0, Ci →JVM Ci+1. We restrict
attention to configurations that are type safe, in the sense that heap contents match the
types of corresponding locations, and that arguments and return/exceptional values
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for primitive operations as well as method invocations match their prescribed types.
The Java bytecode verifier serves, among other things, to ensure that type safety is
preserved under machine transitions (cf. [13]).

Field accesses and legal executions

In this paper, we wish to reason about the behavior of arbitrary, possibly malicious,
multithreaded programs. Therefore, we cannot assume that the programs we con-
sider are correctly synchronized. This complicates our execution semantics, because
non-correctly-synchronized programs may exhibit non-sequentially-consistent exe-
cutions (see Chapter 17 of the Java Language Specification, Third Edition (JLS3)).
An execution is sequentially consistent if there is a total order on the field accesses
in the execution such that each read of a field yields the value written by the most
recent preceding write of that field in this total order. In order to ensure that our se-
mantics captures all possible executions of a program, our transition relation →JVM
does not constrain the value yielded by a field read; specifically, it does not imply
that this value is the value in the heap for that field. However, JLS3 does provide
some guarantees, even for non-correctly-synchronized programs. Therefore, below
we will consider only legal executions. A legal execution is an execution which sat-
isfies both the transition relation →JVM and the memory consistency constraints of
JLS3.

An important guarantee provided by JLS3 that we will need in this paper, is that if
in some legal execution a given field is protected by a given lock, then each read of
that field yields the value written by the most recent preceding write of that field. We
say that a given field is protected by a given lock in a given execution, if whenever a
thread accesses the field, it holds the lock.

The only other assumption we make about JLS3 in this paper is that JLS3 is
monotonic, in the sense that, informally speaking, adding synchronization to a pro-
gram reduces the set of executions.

API method calls

The only non-standard aspect of →JVM is the treatment of API methods. We as-
sume a fixed API M, consisting of a set of classes for which we have access only to
the signature, but not the implementation, of the methods in M. We therefore repre-
sent API method activation records specially. When an API method is called in some
thread a special API method stack frame is pushed onto the call stack. The thread
can then proceed only by either returning or throwing an exception. When the call
returns, an arbitrary return value of appropriate type is pushed onto the caller’s eval-
uation stack; alternatively, when it throws an exception, an arbitrary exceptional acti-
vation record is returned. We assume that the API does not declare any fields visible
to the client; therefore, in our model, steps performed by a thread while it is inside
an API method activation record do not modify the heap.
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Our approach hinges on our ability to recognize API method calls. This property
is destroyed by the reflect API, which is left out of consideration. Among the method
invocation instructions, we discuss here only invokevirtual; the remaining in-
voke instructions are treated similarly.

Given an execution E we define the notion of the observable trace ω(E) of E, as
follows:

ω(C) = ε,

ω(CC ′E) = α ω(C ′E) if C
α→JVM C ′,

ω(CC ′E) = ω(C ′E) if C
τ→JVM C ′,

where a transition from C to C ′ performs an observable action α, denoted C
α→JVM

C ′, if and only if it transitions from the client code to the API or vice versa.
Specifically, we represent a call from a class d /∈ M bound at run time to a
method c.m on an object o with arguments v by a thread tid where c ∈ M as

C
(tid,c.m,o,v)↑

−→JVM C ′, and a normal return from this call with return value r as

C ′ ′ (tid,c.m,o,v,r)↓
−→JVM C ′ ′ ′. We represent an exceptional return from this call with

exception object t as C ′ ′ (tid,c.m,o,v,t)⇓
−→JVM C ′ ′ ′. All transitions other than the above

are non-observable, denoted C
τ→JVM C ′. If the action refers to a security relevant

method it is said to be a security relevant action (sra).
There is one exception to the above definition of observable versus non-observable

actions. We consider calls of method System.exit to be non-observable. (Furthermore,
we assume that such a call is always the last transition of an execution.)

We refer to actions of the form (tid, c.m, o, v)↑, (tid, c.m, o, v, r)↓, and (tid, c.m,
o, v, t)⇓ as before actions, after actions, and exceptional actions, respectively, and we
collect them in sets Ω↑, Ω↓, and Ω⇓.

We denote the set of executions of a program P against an API M as execM(P ).
We define the set T (P ) of the traces of a program P as the traces of the executions
of P :

T (P ) = {ω(E) | E ∈ execM(P )}.

We say an execution is complete if it cannot be extended with an additional transition.
It follows that either the execution is infinite, or it ends with a call of System.exit, or
in the final configuration, all threads are waiting on a lock held by another thread. We
define the set Tc(P ) of complete traces of a program P as the traces of the complete
executions of P .

4. Security automata

ConSpec policies are formalized in terms of security automata. The notion of se-
curity automata was introduced by Schneider [21]. In this paper we view a security
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automaton as an automaton A = (Q, δ, q0) where Q is a countable (not necessarily
finite) set of states, q0 ∈ Q is the initial state, and δ : Q × Ω ⇀ Q is a (partial)
transition function, where Ω = Ω↑ ∪ Ω↓ ∪ Ω⇓ is the set of observable actions. All
states q ∈ Q are viewed as accepting.

Notation 1. For a security automaton A = (Q, δ, q0), q
α−→ q′ abbreviates the con-

dition q′ = δ(q, α).

A security automaton can be derived from a ConSpec policy in the obvious man-
ner. We refer to [1] for details. We assume after clauses of the Conspec policy to be
exhaustive such that an after action can never fail, but it can update the security state.

Definition 1 (Policy adherence). The program P adheres to security policy PA, if
for all executions E of P , ω(E) ∈ P A.

5. Inlining

By inlining we refer to the procedure of compiling a contract into a JVML based
reference monitor and embedding this monitor into a target program. Formally, an
inliner is a function I which for each policy P A and program P produces an inlined
program I (P A, P ). The intention is that the inserted code enforces compliance with
the policy, and otherwise interferes with the execution of the client program as little
as possible.

In this section, we first look at various correctness properties for inliners. Then,
we introduce the design of our inliner and we prove its correctness.

5.1. Inlining correctness properties

We first look at the traditional correctness properties for inliners: security, conserv-
ativity, and transparency. Then, we introduce a number of new correctness properties
that deal with complications caused by the setting of multithreaded Java-like pro-
grams: strong conservativity, relative strong conservativity, and weak transparency.

For an inliner whose only expected functionality is to intercept and abort execution
of an underlying client program in case of policy violation there are three correctness
properties of fundamental interest (cf. [14] for the case of edit automata). Namely,
the inliner should enforce policy adherence (security), it should not add new behavior
(conservativity), and it should not remove policy-adherent behavior (transparency).
More formally:

Definition 2 (Inliner correctness properties). An inliner I is:

• Secure if, for every program P , every trace of the inlined program I (PA, P )
adheres to PA, i.e. T (I (P A, P )) ⊆ P A.
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Thread1: beforeA = 1; || Thread2: r1 = afterA;
sra(); // A || sra(); // B
afterA = 1; || r2 = beforeA;

|| if (r1 == 1 && r2 == 0) {sra();}

Fig. 3. Transparency counterexample.

• Conservative if, for every program P , every trace of the inlined program
I (P A, P ) is a trace of P , i.e. T (I (P A, P )) ⊆ T (P ).

• Transparent, if every adherent trace of the client program is also a trace of the
inlined program, i.e. if T (P ) ∩ P A ⊆ T (I (P A, P )).

Recall from Section 3 that the set of traces T (P ) of a program P is the set of the
sequences T of observable actions (i.e., API calls and normal and exceptional returns
from API calls) such that there is a (partial or complete) execution of the program
whose observable trace is T .

Unfortunately, in case the client program is not well-synchronized, transparency
is infeasible in general, because it is not in general possible to perform inlining with-
out introducing extra synchronization and consequently eliminating certain execu-
tions. To illustrate this, consider the program of Fig. 3. This program is not well-
synchronized, since there are data races on fields beforeA and afterA. Specifi-
cally, threads 1 and 2 do not synchronize their accesses of these fields. In the presence
of data races, the semantics of Java allow field accesses to appear out of order; this
is necessary to allow the JIT compiler (which compiles bytecode to machine code)
and the hardware to perform important optimizations. In the example, suppose the
body of method sra is a simple field assignment. In that case, the JIT compiler can
inline this method and then reorder the field accesses, since they are independent.
This is why an execution where r1 gets the value 1 and r2 gets the value 0 is a legal
execution. As a result, the program has a trace with three sra() calls.

Now, consider the inlined version of this program. In general, the inlined code
needs to access the security state; since multiple security-relevant calls may occur
concurrently, these accesses must be synchronized. This means that in general, the
inliner inserts synchronization constructs before and after each sra() call. As a
result, the JIT compiler is no longer allowed to move the accesses of beforeA and
afterA across the sra() calls, and the execution where r1 equals 1 and r2 equals
0 is no longer legal. Therefore, the inlined program does not have a trace with three
sra() calls, which means that the inliner is not transparent.

For this reason, the transparency property is only really meaningful for well-
synchronized programs. For this restricted case, however, transparency still serves
as a useful correctness check: An inliner which is transparent for well-synchronized
clients (and, which is secure and conservative) must necessarily exploit race condi-
tions to interfere in an undesirable way with a client program. However, to allow also
for programs that are ill-synchronized we look for alternative correctness criteria.
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Definition 3. The truncation truncPA (T ) of a trace T under a policy P A is the great-
est prefix T ′ of T that adheres to P A.

Thus, if T adheres to P A, truncPA (T ) = T , and otherwise T is of the form α0 ·αn

such that, for some i: 0 � i < n, α0 · · · αi ∈ P A and α0 · · · αi+1 /∈ P A.

Definition 4 (Strong conservativity). An inliner I for a given policy PA is strongly
conservative if, for each program P , every complete trace of the inlined program
I (P A, P ) is the truncation of a complete trace of P under PA:

Tc(I (P A, P )) ⊆ truncPA (Tc(P )).

Example 1. An abstract version of the program in Fig. 3 might have traces AB, BA,
ABC and BAC, all complete and all in P A. Suppose the set of complete traces of
I (P A, P ) is {AB, BA}. The inliner I is strongly conservative (for this particular
program), but not transparent. As another example suppose P ′ has traces A, AB,
AC, ABC such that A, AB ∈ P A, AC, ABC /∈ PA, and AC, ABC, but not A,
AB, are complete. Suppose the only trace of I (PA, P ′) is A (so A is complete).
Again, I is strongly conservative (for the program P ′) but not transparent.

Proposition 1. An inliner which is strongly conservative is secure and conservative.

Proof. For security assume T ∈ T (I (P A, P )). Then we find T ′ � T such that T ′ ∈
PA, by strong conservativity, so also T ∈ PA, by prefix closure. For conservativity
the argument is similar. �

Strong conservativity implies that the inliner does not add new termination or
deadlock behavior. But, in a threaded setting inliners typically use locks to access
shared resources, in particular the security state. This may constrain the order of ac-
tions. In particular, as is the case in this paper, if the security state is locked across the
entire security-relevant call, each such call must be completed before a new security-
relevant call can take place. But this may not be compatible with constraints induced
by the API, as the following example shows.

Example 2. Consider an API M with a barrier method m that allows two threads
to synchronize as follows: When one thread calls m, the thread blocks until the other
thread calls m as well. Suppose this method is considered to be security-relevant,
and the inliner, to protect its state, acquires a global lock while performing each
security-relevant call. This inliner is strongly conservative: The notion of complete
trace simply does not take constraints induced by the API into account. On the other
hand a client program may consist of two threads, each calling m and then terminat-
ing. The inlined version will have one complete trace where one of the threads enters
m and then blocks. An uninlined complete trace will contain two calls and returns
of m. Thus the inlined complete trace will not be the truncation of an uninlined one
at the point of policy violation.
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So the definition of strong conservativity needs to be amended to take such order-
inducing API calls into account. Note that the JVM semantics of API calls given in
Section 3 does not do this.

Definition 5 (Relative strong conservativity). For each program P , let execc
M(P ) be

the set of complete executions of P in the API M. An inliner I is strongly conserv-
ative relative to the API M, if for each policy PA and each program P ,

ω(execc
M(I (P A, P ))) ⊆ truncPA (ω(execc

M(P ))).

An implication of this definition is that, if in some execution E in some API the
inliner kicks in and blocks an sra α, then there will be an execution of the uninlined
program which after the trace of E executes α. The condition does not guarantee,
however, that E without the inliner next would have performed α. This is a con-
sequence of our strictly observational definition of strong conservativity; if more
precision is needed, one needs to take internal intermediate states into account, e.g.
using bisimulation-based techniques.

As we noted above, inliners generally cannot be transparent for ill-synchronized
programs. In fact, some reasonable inliners are not transparent even for well-
synchronized programs, because they force the start action and the return action of
a security-relevant call to occur atomically, for instance by locking (as we do in this
paper). In that case there may be client program traces with nonatomic API calls
and returns that can not be realized after inlining, only because of execution con-
straints induced by the inliner. However, these inliners may still be transparent after
canonicalization of the traces with respect to a set of atomic methods:

Definition 6. A method m is atomic in a trace T if, for every normal or exceptional
return action from m performed by a thread t in T , no observable action by t inter-
venes between this return action and the corresponding call action.

Consider for instance methods m and m′ with call and return actions callm(t),
retm(t), etc, performed by thread t. Then m is atomic in the traces callm(t)
retm(t)callm′ (t) and callm(t)callm′ (t′)retm(t) (with t′ �= t) but not in the trace
callm(t)callm′ (t)retm(t). Notice that m is atomic in T is equivalent to stating that m
does not perform callbacks in T .

Definition 7. Let an API M be given. The canonicalization of the trace T with re-
spect to M is the trace canonM(T ) obtained by moving each normal or exceptional
return action from a method m in M in T right after the corresponding call action.

The following is an immediate consequence of our assumptions on the JLS3 exe-
cution model in Section 3:
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Proposition 2. Suppose all methods of API M are atomic in all traces of P . If T is
a trace of P so is canonM(T ).

Proposition 2 presupposes the “order-oblivious” API semantics of Section 3, as
order-inducing API calls may prevent the shuffling around of return actions needed
for the proof.

For inliners that force atomicity of API calls a suitable weakening of the trans-
parency conditions restricts attention to canonic traces in the following way.

Definition 8. An inliner I is weakly transparent relative to an API M, if for every
policy P A, every program P , and every trace T of P that adheres to P A, the canon-
icalization of T equals the canonicalization of some trace of I (PA, P ), i.e.

canonM(ω(execM(P )) ∩ P A) ⊆ canonM(ω(execM(I (P A, P )))).

Notice that weak transparency only makes sense for policies that are closed under
canonicalization.

5.2. Example inliner

In order to enforce a policy through inlining, it is convenient to be able to statically
decide whether a given event clause applies to a given call instruction. Therefore, in
this example inliner, we impose the restriction on policies that they should have
simple call matching. We say a policy has simple call matching if for any security-
relevant method c.m, an invokevirtual d.m call is bound at run time to method
c.m if and only if d = c. We deal with the full inheritance problem in earlier work [1].

For simplicity, we also require that the initial values for the security state variables
specified by the policy are the default initial values for their corresponding Java
types.

The inliner we propose replaces each instruction L: invokevirtual c.m
where c.m is security-relevant by JVML code corresponding to the pseudo code
in Fig. 4. The replacement is referred to as a block of inlined code.

The inliner locks the security state and stores arguments to the virtual call for use
in event handler code. Each piece of event code evaluates guards by reference to
the security state and the stored arguments, and updates the state according to the
matching clause, or exits, if no matching clause is found. Before passing control to
the API method, the original arguments are restored, and immediately upon return
the return value on the operand stack is stored to a local variable. On normal return,
after successful completion of the normal return event handler code the security state
is unlocked and the inlined code fragment is exited. On exceptional return the excep-
tion is instead rethrown.

The two main complications which we had to address when designing this inliner
are the possibility of internal exceptions, and the interaction of our locking strategy
with API-induced ordering constraints.
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L: ldc SecState
monitorenter

astore 0
...
astore n − 1

beforeG1: [eval before G1]
ifeq beforeG2
[before update 1]
goto beforeEnd
...

beforeGi: [eval before Gi]
ifeq exit
[before update i]

beforeEnd: aload n − 1
...
aload 0

invoke: invokevirtual c.m

invokeDone: astore n

afterG1: [eval after G1]
ifeq afterG2
[after update 1]
goto afterEnd
...

afterGj: [eval after Gj]
ifeq exit
[after update j]

afterEnd: aload n

ldc SecState
monitorexit

afterReleased: goto done

exceptionalG1: [eval exceptional G1]
ifeq exceptionalG2
[exceptional update 1]
goto exceptionalEnd

...
exceptinoalGk: [eval exceptional Gk]

ifeq exit
[exceptional update k]

exceptionalEnd: ldc SecState
monitorexit

exceptionalReleased: athrow

exit: iconst −1
invokestatic System.exit

done:

Extra entries in exception handler array:

From To Target Type
invoke invokeDone exceptionalG1 any
L exceptionalReleased exit any
exit done exit any

Fig. 4. The inlining replacement of L: invokevirtual c.m.
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The Java Virtual Machine Specification [16] allows a JVM to throw an Inter-
nalError or UnknownError exception at any time whatsoever. This means that,
e.g. when the JVM attempts to compile a piece of bytecode about to be executed by
a thread to machine code but it does not have enough memory to store the machine
code, it can throw such an internal exception instead of having to terminate the en-
tire program. Whereas internal exceptions are useful for JVM implementors, they
cause complications for the design of our inliner. Specifically, for security, we must
maintain the property that whenever no block of inlined code is being executed, the
current security state corresponds to the trace of security-relevant actions performed
previously during the execution. If an internal exception were to cause control to exit
a block of inlined code prematurely, this property would be violated. Therefore, we
catch all exceptions that occur anywhere in the inlined code and, when any excep-
tion is thrown by any instruction other than the security-relevant call, we exit the
program. Notice that this is secure and conservative but not strongly conservative,
since we exit at a place where the original program does not exit. Below, we prove
strong conservativity of our inliner under the assumption that the JVM is error-free,
i.e. it never throws an internal exception.

The other complication is caused by our choice of locking strategy. Since the
program may perform multiple security-relevant calls concurrently, accesses to the
security state by the inlined code must be synchronized. We do so by protecting the
security state using a lock. There are essentially two ways to do so: acquire the lock
for the entire duration of the inlined code (strong synchronization), or acquire it once
when processing the before action, release it before performing the security-relevant
call, and then acquire it again for processing the after or exceptional action (weak
synchronization, analogous to the behavior of the PoET/PSLang inliner [9]). In this
paper, we adopted strong synchronization; it has the advantage that both actions asso-
ciated with a given security-relevant call (i.e. the before action and the after or excep-
tional action) always occur together, whereas in the case of weak synchronization,
the actions from multiple security-relevant calls may be interleaved, leading to a less
intuitive policy semantics. A downside of strong synchronization, however, is that it
is not applicable in the case where security-relevant methods have synchronization
behavior themselves, as discussed above. Indeed, in that case, strong synchronization
may introduce deadlocks that did not exist in the original program. Therefore, below,
we prove strong conservativity under the assumption that security-relevant methods
are non-blocking. Furthermore, strong synchronization is not appropriate when the
security-relevant methods include long-running operations that benefit from concur-
rent execution.

We now proceed to state and prove two correctness theorems for our inliner.
The first is general, and applies to both ill-synchronized and well-synchronized pro-
grams. The second additionally states weak transparency for well-synchronized pro-
grams.

Definition 9 (Non-blocking method). A method c.m in API M is non-blocking, if
for all programs P and all executions E ∈ execM(P ) either:
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(1) E is infinite or
(2) E is terminating, or
(3) E is deadlocked with final configuration C, and no thread in C is inside c.m.

Theorem 1. Let I be the inliner of Fig. 4.

(1) I is secure and conservative.
(2) For an error-free JVM, and relative to an API for which each srm is non-

blocking, the inliner I is strongly conservative.

Proof (Sketch). We prove only 2 here. The proofs of security and conservativity
are similar but easier. Assume an error-free JVM and let P A and P be given, and
assume that the API is non-blocking with respect to the srms of the policy. Consider
an execution E ∈ execM(I (P A, P )), and let T = ω(E). There are three cases:
Either (1) E is infinite, (2) E is terminating, or (3) E is deadlocked.

1. We claim it is possible to extract from E another execution E′ which replaces
each complete execution of an inlined block with the execution of the single
invokevirtual instruction for which the block was inserted, and which replaces
each partial execution with either nothing or the invokevirtual instruction, de-
pending on whether the instruction concerned is eventually executed in E or
not (note that we do not assume fairness so it is possible for a thread from
some point onwards never to be scheduled again). Note that this replacement
can be done in parallel, since SecState.class locks all accesses to the se-
curity state. To see how this is done let E have the shape C0 · · · Cn · · · Cm · · ·
such that Ci = (hi, Λi, Θi) for all i ∈ ω, and such that, for some tid,
Θn(tid) = (Mn, pcn, sn, rn) :: R, Θm(tid) = (Mn, pcm, sm, rm) :: R, pcn
points to label L in Fig. 4, pcm points to label done, and L � pci � done for
all i ∈ [n, m]. This situation corresponds to the normal, complete execution of
the inlined block in 4. Now transform each configuration Ci as follows:

• If Λi(SecState.class) is set, unset it.
• Whenever pci is less than the pc of the invokevirtual instruction, replace si

by sn, and otherwise replace si by sm.
• Remove all register values inserted by the inliner from all ri.

A similar construction is applied to exceptional, complete executions. Since
virtual machine errors are disregarded, only the invokevirtual instruction and
the rethrow instruction can raise exceptions. The transformation of exceptional
thread configurations is as above, except that the entire frame is replaced, in-
stead of just the operand stack and part of registers. Partial executions are han-
dled in the obvious way. The claim, now, is that the execution thus obtained
is an infinite execution of the inlined program with all inlined instructions re-
placed by noop’s and the exception tables restored accordingly. A further trans-
formation step eliminates the noop’s and restores the exception tables com-
pletely, thus obtaining an execution of the original program. It is clear that the
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execution remains infinite under this transformation as well. This completes
the case.

2. Assume then that E is terminating. We claim that we can extract an execu-
tion E′ for the uninlined program which is terminating as well, and such that
T (E) = truncPA (T (E′)). If E terminates because of a call to System.exit
by an inlined block for a call of a security-relevant method c.m with target o
and arguments v in a thread tid, then this can happen only because either all
before guards have been evaluated to false, or all after guards have. The latter
cannot happen since the disjunction of the guards is a tautology, and since the
guards are evaluated correctly on the call parameters. The former can happen
only if the trace T (E)(tid, c.m, o, v) is policy violating. In this case we can
eliminate all inlined blocks from E, as above, and reroute control flow at the
end of (the transformed) E to the invokevirtual instruction, execution of which
was prevented by the exception. In this way we obtain a prefix of E′ which can
be completed to satisfy the requirements of the statement.

3. The final case is where E is deadlocked. This can only be the case if each live
thread in the final configuration, say Ck, is waiting at a lock. The lock can be
either SecState.class, or another lock set either from a client instruction,
or from an API method. In the latter case, the method call is not inlined, since
otherwise the method would be non-blocking. If all locks are set from a client
instruction or a non-inlined API call then we extract from E an uninlined com-
plete execution with the same trace, as above. Finally, if a thread is waiting
at a security state lock then it must be waiting at the initial monitorenter
instruction of some inlined block. But that can only be the case if some other
thread is deadlocked inside an inlined block, which is impossible, as it would
then be deadlocked inside a non-blocking srm. �

�

Lemma 1. Consider a set of methods m ∈ M . If the methods in M are non-
blocking, then M is atomic in any trace T of any program P .

Proof. By contradiction. Suppose there is a program P and a trace T of P such that
some method m ∈ M performs a callback in T . Then P can be modified such that it
deadlocks inside the callback. It follows that m is not non-blocking. �

Theorem 2. Relative to an API for which each srm is non-blocking, I is weakly
transparent for well-synchronized programs and policies that are closed under
canonicalization.

Proof. Consider a policy P A that is closed under canonicalization, and a well-
synchronized program P . Further consider a trace T of P that adheres to PA. We
need to prove that there is a trace of the inlined program I (PA, P ) whose canonical-
ization equals the canonicalization of T . Since each srm is non-blocking, the srms are
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atomic in T . Choose an execution E of P . Then, let E′ be the sequence of configura-
tions obtained by moving each normal or exceptional srm return transition in E right
after the corresponding call transition. Then E′ is an execution of P and its trace is
canonM(T ), the canonicalization of T ; this is always true because the srms are non-
blocking. Now, further transform E′ by inserting the inlined code prolog operations
before each SRM call transition, and by inserting the inlined code epilog operations
after each SRM return transition. The resulting sequence of configurations E′ ′ is a
legal execution of the inlined program I (PA, P ), because P is well-synchronized
and therefore the extra synchronization has no influence on existing field accesses,
and because canonM(T ) adheres to P A. It follows that canonM(T ) is a trace of
I (P A, P ). Since canonM is idempotent, canonM(canonM(T )) equals canonM(T )
and we have proven the theorem. �

6. Case studies and benchmarks

The inlining algorithm described above has been implemented in Java using the
ASM framework [18]. We present some results and benchmarks of this inliner in
four case studies. All case studies comprise a regular JavaME application and a
relevant security policy and are available at url http://www.csc.kth.se/
˜landreas/inlining.

ImageExchange (IE). ImageExchange is a combined server/client application that
allows users to exchange images over a Bluetooth connection. The user may
choose to act as a server and publish selected images, or as a client and down-
load published images.
The policy in this case study restricts the program to only send the file that
was last approved by the user. We adapt the bluetooth and gui API’s slightly
to allow this policy to be conveniently formulated.

Snake (SN). This is a classic game of snake in which the player may submit current
score to a server over a network connection.
The policy prevents data from being sent over the network after reading from
phone memory.

MobileJam (MJ). The MobileJam application is a Bluetooth GPS based traffic jam
reporter which utilizes the online Yahoo! Maps API.
The policy prevents the application from connecting to any URLs other than
those starting with http://local.yahooapis.com.

BatallaNaval (BN). BatallaNaval is a multiplayer battleship game that communi-
cates through SMS messages.
In this case the policy restricts the number of sent SMS’s to a constant.

The applications are taken from the case studies of the S3MS project. All policies
were successfully enforced by our inliner.

The benchmarks for the case studies are summarized in Table 1.
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Table 1

Benchmarks for the case studies. Inlining was performed with an Intel
Core 2 CPU at 1.83 GHz with 2 Gb memory

IE SN MJ BN

Security relevant invokes 2 2 4 2

Original size of binaries (kb) 35.2 23.2 196.2 81.8

Inlining duration (s) 0.56 0.48 1.80 1.25

Size increase (inlining) (%): 1.1 1.1 0.2 0.3

6.1. Inlining overhead

To determine the runtime overhead impact of inlining, a program that invoked an
empty dummy SRM in a loop was constructed. The execution time of this loop was
then measured before and after inlining. The inlining caused the execution time to in-
crease from 407 ms to 1358 ms when the loop iterated 106 times on a Sony-Ericsson
W810i. This indicates that the overhead in this experiment was 951 nanoseconds per
security-relevant call. This suggests that even programs that performs many security-
relevant calls can be inlined with a close to negligible performance impact. The sam-
ple policy used mentioned the dummy SRM in one BEFORE and one AFTER clause
with two guards each.

Note, however, that the above experiment did not measure the performance impact
resulting from the loss of parallelism due to the serialization of security-relevant
calls. Clearly, this impact is highly dependent on the specific application and its
inputs.

7. Conclusions

We have surveyed the security-by-contract paradigm for mobile application se-
curity proposed by the EU FP6 project S3MS. A main technical component of this
framework is monitoring and monitor inlining, and as the technical contribution of
this paper we have discussed inlining correctness criteria suitable for multi-threaded
bytecode in the style of Java and .NET, and used the criteria to prove correctness for
a concrete inlining algorithm.

The inliner we examine is blocking in the sense that the embedded security state is
locked across the security-relevant call, thus preventing concurrent accesses to those
methods. This may cause serious performance degradation, in particular for methods
involving I/O. Indeed, Erlingsson’s original inliner [9] avoids this problem by un-
locking just at the point of executing the call itself. This, however, is sound only for
policies that are race-free, in the sense of being insensitive to the sequencing of con-
current actions. In forthcoming work we address this issue and prove correctness of
a non-blocking inliner, but for a restricted policy language. In the present setting one
can alleviate the problem to some extent by splitting the security state into disjoint
components that are locked separately.
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A number of extensions of this work merit attention. First, we do not yet address
inheritance. This has been considered for the case of sequential Java in [1], and
multi-threading is not likely to add significant complications. Security automata as
we consider here are allowed to be infinite state. This poses no problems for inlining,
and it is very useful to correlate actions as in the IE application considered above.
(But, contract-policy matching becomes undecidable, for obvious reasons.) We do
not allow the heap to be used in policy guards; whereas this would be useful, al-
lowing it creates significant theoretical and practical problems which merit further
investigation.

An interesting direction is to consider proof-carrying code (PCC) for monitor in-
lining. The advantage of such a framework would be to allow inlining to be per-
formed outside the application loader’s trust boundary. We have already realized this
for the case of sequential Java, and an extension to threaded Java is currently under
way.
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