
Security Monitor Inlining for Multithreaded
Java

Mads Dam1, Bart Jacobs2?, Andreas Lundblad1, and Frank Piessens2

1KTH, Sweden 2K.U.Leuven, Belgium
{mfd,landreas}@kth.se {bartj,frank}@cs.kuleuven.be

Abstract. Program monitoring is a well-established and efficient ap-
proach to security policy enforcement. An implementation of program
monitoring that is particularly appealing for application-level policy en-
forcement is monitor inlining: the application is rewritten to push mon-
itoring and policy enforcement code into the application itself. The in-
tention is that the inserted code enforces compliance with the policy
(security), and otherwise interferes with the application as little as pos-
sible (conservativity and transparency).
For sequential Java-like languages, provably correct inlining algorithms
have been proposed, but for the multithreaded setting, this is still an
open problem. We show that no inliner for multithreaded Java can be
both secure and transparent. It is however possible to identify a broad
class of policies for which all three correctness criteria can be obtained.
We propose an inliner that is correct for such policies, implement it for
Java, and show that it is practical by reporting on some benchmarks.

1 Introduction

Program monitoring is a well-established and efficient approach to prevent poten-
tially misbehaving software clients from causing harm, for instance by violating
system integrity properties, or by accessing data to which the client is not en-
titled [1, 2]. The conceptual model is simple: Potentially dangerous actions by a
client program are intercepted and routed to a policy decision point in order to
determine whether the actions should be allowed to proceed or not. In turn, these
decisions are routed to a policy enforcement point, responsible for ensuring that
only policy-compliant actions are executed. For the purpose of this paper, we
will assume that policies are given as security automata in the style of Schneider
[3].

Program monitoring can be implemented in different ways. The monitor can
be external to the program being monitored: it could for instance be implemented
as a proxy API, as part of a virtual machine, or as part of an operating system
kernel.

An alternative implementation approach which is particularly appealing for
application-level policy enforcement is monitor inlining [2]. Here, code rewriting
is used to push policy relevant functionality into the client programs themselves.
? Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

For sequential programs, external monitoring and inlined monitoring enforce
the same class of policies [4].1 We show that, somewhat surprisingly, this is not
true for multithreaded programs. The fact that the inlined monitor can only
influence the scheduler indirectly – by means of the synchronization primitives
offered by the programming language – has the consequence that certain policies
cannot be enforced securely and transparently by an inlined reference monitor.

We give a simple example of a policy which an inliner is either unable to en-
force securely, or else the inliner will need to affect scheduling by locking across
the entire method call. This, however, can result in loss of transparency, perfor-
mance degradation and, possibly, deadlocks. It is, however, possible to identify a
large class of policies for which inlining remains a practical and efficient enforce-
ment technique. We propose one such class, the race-free policies, and show that
policies in this class can be enforced correctly by inlining in multithreaded Java.
Moreover, we argue that the class of race-free policies is in fact the largest class
of policies that is meaningful in a multi-threaded setting; the non-race-free poli-
cies by definition rely on execution constraints that go beyond those enforceable
by inlining.

In particular, for many existing inlined monitoring systems whose formal
treatment did not include multithreading but whose implementations could deal
with multithreading [5–7], a non-race-free policy does most likely not express
what the policy writer intended.

In summary, the paper makes the following contributions:

– We show that inlined monitoring in multithreaded Java is strictly less pow-
erful than external monitoring.

– We characterize a class of policies that can be correctly enforced by inlining.
– We describe the design of an inlining algorithm and prove it correct for the

identified class of policies.
– We report on our experience with a prototype implementation.

Finally, we believe that our study of the impact of multithreading on program
rewriting in the context of monitor inlining is a first step towards a formal
treatment of more general aspect implementation techniques in a multithreaded
setting. Indeed, our policy language is a domain-specific aspect language, and
our inliner is a simple aspect weaver.

1.1 Related Work

Schneider [3] proposed the use of automata as a tool to formalize security poli-
cies, and monitor inlining to enforce such policies was examined in [2, 8]. The
PoET/PSLang toolset by Erlingsson [8] implements monitor inlining for Java.
That work represents security automata directly in terms of Java code snippets,
making it difficult to formally prove correctness properties of the approach. Sub-
sequent work on monitor inlining that addresses correctness properties includes
1 If we consider broader classes of policies than those expressible by security automata,

program rewriting can enforce strictly more policies.

[9] and [10], but these papers only consider sequential programs. Several papers
[8, 11, 7, 12] report on inliner implementations for multithreaded Java-like pro-
grams with locking regimes that appear essentially identical to the one used in
our example algorithm. None of these works, however, analyze the implications of
multithreading and locking on the enforceable class of policies. In previous work
[13] we have examined the implication of locking across security relevant method
calls, and to which extent transparency can be preserved in such a setting.

Edit automata [14, 15] are examples of security automata that go beyond
pure monitoring, as truncations of the event stream, to allow also event suppres-
sions and insertions. As a consequence, edit automata can enforce a richer class
of policies, the infinite renewal policies. A practical implementation of edit au-
tomata based on inlining is the Polymer system [6]. The main point of Polymer
is to support composition of policies, and studying the impact of concurrency is
left for future work.

There are many policy enforcement techniques, and the question of what
classes of policies each policy enforcement technique can handle has received a
considerable amount of attention. Schneider [3] kicked off this line of research,
and his results were refined and extended by Viswanathan [16], Hamlen et al. [4]
and others. Hamlen et al. distinguish three classes of enforcement mechanisms:
static analysis, execution monitoring and program rewriting. They prove that
when an execution monitor is afforded the same collection of intervention capa-
bilities as an inliner, the inlining approach is strictly more powerful. This paper
identifies an important domain where an external execution monitor has more
intervention capabilities: in particular, an external execution monitor can freeze
all threads in a program, whereas an inliner can only influence other threads by
means of the synchronization primitives offered by the programming language.

Finally, inlining is closely related to aspect weaving. Aspects have been pro-
posed by many authors as an implementation technique for security policy en-
forcement [14, 17–19]. Other authors have generalized the events that an inlined
monitor can see from method invocations and returns to program events specified
by more general pointcut expressions [12].

1.2 Overview of the Paper

The rest of this paper is structured as follows. In Section 2, we briefly discuss the
formal model of the Java Virtual Machine that we use in the rest of the paper.
Next, in Section 3, we discuss what security policies we consider in this paper,
and we introduce notation for them. Then we define the notion of inliner, and
the correctness properties for inliners. Section 5 shows that these correctness
criteria cannot be met for the policies and programs that we consider. The
following section introduces the class of race-free policies, and Section 7 proposes
an inlining algorithm and shows it is correct for all race-free policies. Then we
report on experience with our implementation, and we offer a conclusion.

2 Program Model

We want to prove properties of inliners that operate on Java bytecode. The
inlined code will monitor the interaction of the bytecode with a given API.
We abstract from the API implementation: it will in many cases be a native
implementation as policies typically talk about methods that perform IO.

Hence, our formal model is a standard model of the JVM extended with fa-
cilities to call an external API. Most of the results in this paper do not depend
on the details of this formal model: the limitations we identify for monitor inlin-
ing in a multithreaded setting hold for a wide class of imperative programming
languages and execution environments. In this section, we discuss those aspects
of the formal model that are relevant for the paper. An appendix gives a more
detailed exposition, as well as proofs for the correctness of the example inliner
that necessarily depend on these details.

The formal model is a standard small-step operational semantics that defines
a transition relation→JVM on JVM configurations. An execution E of a program
P is a (possibly infinite) sequence of JVM configurations C0C1 . . . where C0 is
the initial configuration. The external API is modeled as a set of classes (disjoint
from that of the client program) for which we have access only to the signature,
but not the implementation, of its methods. It is essential that we perform API
calls in two steps, to correctly model the fact that API calls are non-atomic
in a multithreaded setting. When an API method is called in some thread a
special API method stack frame is pushed onto the call stack, as detailed in the
appendix. The thread can then proceed by returning or throwing an exception.
When the call returns, an arbitrary return value of appropriate type is pushed
onto the caller’s evaluation stack; alternatively, when it throws an exception, an
arbitrary, but correctly typed exceptional activation record is returned.

For the purpose of this paper, we assume sequential consistency of the JVM
memory. This means we can reason about multithreaded executions as inter-
leavings of single-thread executions, compatible with the happens-before order.
The happens-before order [20] is a partial order on the transitions in an execu-
tion. It consists of the program order (ordering of two actions performed by the
same thread) and the synchronizes-with order (order induced by synchronization
constructs), and the transitive closure of the union of these.

The real Java memory model is weaker and this impacts our work in inter-
esting ways, but studying this impact is left for future work.

The JVM execution steps that are of interest in this paper are the steps
where an API method is entered or exited. Given an execution E the observable
trace ω(E) of E is defined as follows:

ω(C) = ε

ω(CC ′E) = α ω(C ′E) if C α−→JVM C ′

ω(CC ′E) = ω(C ′E) if C τ−→JVM C ′

where a transition from C to C ′ performs an observable action α, denoted
C

α−→JVM C ′, if and only if it transitions from the client code to the API or

vice versa. Specifically, we represent a call from client code bound at run time
to an API method c.m on an object o with arguments v by a thread tid as

C
(tid,c.m,o,v)↑−−−−−−−−−→JVM C ′, and a normal return from this call with return value r

as C ′′
(tid,c.m,o,v,r)↓−−−−−−−−−−→JVM C ′′′. We represent an exceptional return from this call

with exception object t as C ′′
(tid,c.m,o,v,t)⇓−−−−−−−−−−→JVM C ′′′. All transitions other than

the above are non-observable, denoted C
τ−→JVM C ′.

We refer to actions (tid , c.m, o,v)↑, (tid , c.m, o,v, r)↓, and (tid , c.m, o,v, t)⇓

as before actions, after actions, and exceptional actions, respectively, and we
collect them in sets Ω↑, Ω↓, and Ω⇓. We refer to after and exceptional actions
together as end actions, and we use start action as a synonym for before action.

The set of executions of a program P is exec(P). We define the set T (P) of
traces of P as T (P) = {ω(E) | E ∈ exec(P)} .

We will assume for simplicity that program and API do not share fields.
This is not a restriction, as shared data can be modeled using fields defined in
the API implementation and accessed with getters and setters. This effectively
makes these field accesses observable.

In our program model all interactions between client code and API happen
through method invocations, and in such a setting sets of traces as defined above
are an adequate model for program behavior [21, 22]: two programs with the same
set of traces are observationally equivalent.

3 Security Policies

In this paper we consider only security policies that can be represented as security
automata [3]. A security automaton is an automaton A = (Q, δ, q0) where Q is
a countable (not necessarily finite) set of states, q0 ∈ Q is the initial state, and
δ : Q×Ω ⇀ Q is a (partial) transition function, where Ω = Ω↑ ∪Ω↓ ∪Ω⇓. All
states q ∈ Q are viewed as accepting. Note that our notion of policy assumes
that policies only talk about API method invocations and returns. Many existing
enforcement systems make the same assumption ([8, 6]). This design decision
limits our abilities to, for instance, perform any detailed data flow tracking.
Policies in such a framework are typically sparse: Only a small number of API
calls are actually security relevant, and calls to these methods are infrequent.
But, the framework is sufficiently rich to allow a wide range of interesting policies
to be expressed, and, in particular, it serves well as a generic setting in which to
examine the effects of multithreading.

Our work uses the ConSpec language [23] for policy specification. ConSpec
is similar to PSlang [8], but it has a formal semantics mapping ConSpec speci-
fications to security automata.

An example of a ConSpec specification is given in Figure 1. The syntax is
intended to be largely self-explanatory: The specification in Figure 1 states that
the program has to ask the user for permission each time it intends to send a
file over bluetooth. It does so by storing after a confirmation dialog what file
the user has authorized to be sent, and to what URL it can be sent. Before an

invocation of the sendFile method, it is checked that the actual parameters of the
invocation correspond to the stored filename and URL. Hence, if the program
would not pop up a confirmation dialog before sending, or if it would send a
different file or send to a different URL than those confirmed in the dialog, the
policy will block the send.

SECURITY STATE String requestorURL,
String requestedFile;

BEFORE BluetoothToolkit.sendFile(String destURL, String file)
PERFORM

requestorURL.equals(destURL) &&
requestedFile.equals(file) -> { }

AFTER reply = JOptionPane.showConfirmDialog(String query)
PERFORM

reply != 0 && goodFileQuery(query) -> {
requestedFile = queryFile(query);
requestorURL = queryRequestor(query) }

true -> { }

The macro goodFileQuery(query) returns true iff query is a well formulated file send
query and queryRequestor(query) and queryFile(query) returns the requestor and
file substrings of query respectively.

Fig. 1. A security specification example written in ConSpec.

The example has two security relevant methods, JOptionPane.showCon-
firmDialog and BluetoothToolkit.sendFile. We refer to invocations and re-
turns of such security relevant methods as security relevant actions. The specifi-
cation expresses the constraints on security relevant actions in terms of guarded
commands where the guards are boolean expressions and the updates are lists
of assignments to security state variables. Both the guards and the assignments
may mention the security state and the method call parameters. For an af-
ter action they may also mention the return value. In case the specification
needs to talk about the current thread identifier, a ConSpec policy can call the
Thread.currentThread() method. The only operation defined on thread iden-
tifiers is equality testing, so a policy can specify for instance that two invocations
should happen in the same thread.

The security state declaration is a list of variable declarations. These variables
represent the state space of the security automaton. For simplicity, we require
that the initial values for the security state variables specified by the policy are
the default initial values for their corresponding Java types. For example, the
requestedFile variable in Figure 1 will initially be null.

An event clause defines how the security automaton reacts to a security
relevant action. The event modifiers BEFORE, AFTER and EXCEPTIONAL specify if
the event clause applies to a before action, after action or exceptional action.
The method signature following the event modifier specifies the method that the
event clause applies to. A sequence of guarded updates specifies the behaviour of

the security automaton in response to actions matching the event clause. Guards
are evaluated top to bottom, in order to obtain a deterministic semantics. For the
first guard that evaluates to true, the corresponding update block is executed. If
no clause guards hold, the call is violating, i.e. the security automaton does not
accept the action. We restrict our attention to security automata that always
accept return and exceptional actions. That is, we require that if the event
modifier is AFTER or EXCEPTIONAL, the guards are exhaustive.

A security automaton can be derived from a ConSpec policy in the obvious
manner. We refer to [9] for details.

Definition 1 (Policy Adherence). The program P adheres to security policy
S, if for all executions E of P , ω(E) is accepted by S.

We identify a policy S with the language of traces of observable actions that it
accepts, and hence we write policy adherence as T (P) ⊆ S.

4 Inlining Correctness Properties

A security policy specified as a security automaton can be enforced by an ex-
ecution monitor [3]. An execution monitor is an enforcement mechanism that
can monitor the observable steps that a target program takes, and that can ter-
minate the program if a step does not comply with the policy. Such a monitor
could for instance be implemented in the Java Virtual Machine.

An alternative implementation mechanism for execution monitoring is inlined
reference monitors [5]. Inlining refers to the procedure of compiling a policy into
a bytecode based reference monitor and embedding it into a target program.
Formally, an inliner is a function I which for each policy S and program P
produces an inlined program I(S, P). The intention is that the inserted code
enforces compliance with the policy, and otherwise interferes with the execution
of the target program as little as possible.

In this section we look at traditional correctness properties for inlined moni-
tors. There are three correctness properties of fundamental interest (cf. [15],[4]):
namely, the inliner should enforce policy adherence (security), it should not add
new behavior (conservativity), and it should not remove policy-adherent behav-
ior (transparency). More formally:

Definition 2 (Inliner Correctness Properties). An inliner I is:

– Secure if, for every program P , every trace of the inlined program I(S, P)
adheres to S, i.e. T (I(S, P)) ⊆ S.

– Conservative if, for every program P , every trace of the inlined program
I(S, P) is a trace of P , i.e. T (I(S, P)) ⊆ T (P).

– Transparent, if every adherent trace of the client program is also a trace of
the inlined program, i.e. if T (P) ∩ S ⊆ T (I(S, P)).

Inliners are only allowed to rewrite the program, and not the API. This is a
realistic restriction. Even if an inliner rewrites all Java code, including the Java

API implementation, native calls for instance for IO will remain. In our model,
the Java API would then be considered part of the program, and the monitored
API would only consist of the natively implemented methods. In principle it
would be possible to rewrite the native implementations as well, but the same
issues would reoccur at the level of system calls, or, ultimately, of physical IO.

An upshot of the model is that an inliner can never prevent an API method
from returning: inlined code can only be executed after the call has returned. This
is why we impose the restriction on policies that after actions and exceptional
actions should always be allowed (have exhaustive guards in ConSpec, i.e. at
least one guard should evaluate to true). These actions can still specify updates
to the security state. In particular, they might cause the automaton to enter a
state from which no further actions are possible.

5 Limitations of Inlining in a Multithreaded Setting

In this section, we show that the traditional correctness criteria for inlined mon-
itors are too strong in a multithreaded setting. While it is possible to securely
and transparently enforce any policy specified as explained in Section 3 by an ex-
ternal monitor implemented as part of the Java Virtual Machine, it is impossible
to do this with an inlined monitor.

A key factor that explains why there are policies that cannot be enforced by
inlining is the fact that the inlined code can only control the scheduler indirectly
through locking (whereas an external monitor can “freeze” the execution of the
program while taking security decisions). Here is an example that illustrates
this. Consider the policy in Figure 2. This policy says that C.n() can only be

SECURITY STATE
boolean ok = false;

BEFORE C.m()
PERFORM

true -> { ok = true; }
BEFORE C.n()

PERFORM
ok -> {}

Fig. 2. Not enforceable by inlining.

SECURITY STATE
boolean ok = false;

AFTER C.m()
PERFORM

true -> { ok = true; }
BEFORE C.n()

PERFORM
ok -> {}

Fig. 3. Enforceable by inlining.

called after a call to C.m() has been initiated (but not necessarily returned).
So the trace T1 = (tid , C.m, o,v)↑, (tid ′, C.n, o′,v′)↑ is allowed, but the trace
T2 = (tid ′, C.n, o′,v′)↑, (tid , C.m, o,v)↑ is not allowed by the policy.

But it is impossible to write any program P that has the trace T1 but that
does not have the trace T2 (unless API method C.m collaborates, for instance
by releasing a lock that is visible to the client on entry to C.m. But clearly this
is not something one can assume about every API method).

Consider an example program Pex that has trace T1, for instance the pro-
gram that starts two independent threads where one calls C.m() and the other
calls C.n(). Assume also that no lock is shared between the API and the client
program. There is no way an inliner can rewrite this program to securely and
transparently enforce this policy, because the inliner has no way of synchronizing
with the end of the before action of the C.m() call. The inliner can synchronize
with the return from C.m(), for instance by acquiring a lock across the call to
C.m() and forcing the thread that calls C.n() to wait for that lock. But in that
case, the inliner is actually enforcing the stronger policy shown in Figure 3.

The key observation is that such synchronization is impossible for the policy
in Figure 2 (unless with help from the API, but the inliner cannot rewrite the
API), and hence the ordering of the two before actions is up to the scheduler.
Whatever the inliner does to the program, the inlined program will either have
both traces (and thus the inliner was not secure) or it will have neither of the
two traces (and thus the inliner was not transparent).

Lemma 1. Any program that has an observable trace with two consecutive before
actions, also has the same observable trace with these two before actions swapped.

Proof. Two consecutive before actions are necessarily in different threads: within
one thread, a before action is either the final action of that thread, or it is followed
by an after or exceptional action.

For two consecutive before actions in different threads, there can be no
happens-before relation between the two actions. This follows from the fact that
the only way to introduce such a happens-before relation would be the synchro-
nization on a lock: one thread would have to acquire the lock before doing the
before action, and the other thread would have to release the lock after doing
the before action. However, this would imply that this lock is shared between
client program and API (as a thread is in client code immediately before a before
action, and in the API immediately after a before action). Since we have ruled
out such sharing, the result follows. ut

The assumption that there is no shared lock between client and API is a
reasonable assumption for many API’s, and in particular for the native API.

Theorem 1. No inliner can be secure and transparent for the policy in Figure 2.

Proof. Consider the output P ′ex of the inliner for the given policy and for the
example program Pex above. The program Pex has the traces T1 and T2 discussed
above. By lemma 1, P ′ex either has both T1 and T2 (and hence the inliner was
not secure on Pex), or it has neither of these traces (and hence the inliner was
not transparent for Pex.) ut

6 Race-free Policies

6.1 Definitions and Properties

Generalizing from the example in Figure 2, the key issue is that no client pro-
gram (not even after inlining) can arbitrarily constrain the set of observable

traces. Given a certain trace of observable actions, in general there will be per-
mutations of that trace that are also possible traces of the client program no
matter what synchronization efforts the client does. These permutations that
are always possible are captured by the notion of client-order-preserving permu-
tations. (Recall that start actions are before actions, and that end actions are
after or exceptional actions.)

Definition 3. A permutation π(T) of a trace T of observable actions is client-
order-preserving if, for any i and j such that i < j and Ti is an end action and
Tj is a start action, π(i) < π(j).

The intuition behind the definition is the following: the client can control start
actions, and can only observe end actions. If a start action comes later than an
end action, the client could have synchronized to ensure this ordering. The client
cannot perform such synchronization for concurrent before actions or concurrent
after actions. The definition also implies that actions within a single thread can
never be permuted: within a thread, start and end actions are strictly interleaved.

If a policy accepts a given trace, but rejects a client-order-preserving permu-
tation of the trace, then that policy is not securely and transparently enforceable
by inlining client code. This is captured by the following definition:

Definition 4. A policy is race-free iff, for any trace T and any client-order-
preserving permutation T ′ of T , if T is allowed, then T ′ is allowed.

As an example, the policy in Figure 1 is race-free. As a broader class of exam-
ples consider the class of policies where the security state is a set of permissions,
before actions require a permission to be present in this set and cause the per-
mission to be removed, and after actions restore the permission. Such policies
are race-free. This can be checked for instance by using Proposition 2 below.

We show further that the class of race-free policies is a lower bound on the
class of policies enforceable by inlining by constructing an inliner that is secure,
transparent and conservative for this class of policies.

The bound is tight if we want the inliner to work for all possible API imple-
mentations. This follows from the following theorem.

Theorem 2. No inliner can be secure and transparent for a non-race-free policy
for all possible API implementations.

Proof. Let T be a trace accepted by the policy, and T ′ a client-order preserving
transformation of T that is not accepted. Consider an API implementation that
performs no synchronization. By an argument similar to the one in Lemma 1,
any program that has the trace T necessarily also has the trace T ′: a client-order
preserving permutation is always compatible with the happens-before ordering
if the API does not perform any synchronization. Then, consider any program P
that has trace T . In order to be transparent, the inliner has to produce an inlined
P ′ that has T . But then P ′ also has T ′ and hence the inliner is not secure. ut

An interesting question is how to check if a policy is race-free.

Proposition 1. It is a necessary and sufficient condition for race-freedom that
all start actions are right-movers and all end actions are left-movers in the set
of allowed observable traces. (I.e., if a trace T is allowed, then swapping a pair
of consecutive actions x, y in different threads where x is a start action or y is
an end action yields an allowed trace.)

Proof. Such swappings generate the client-order preserving permutations. ut

In particular, if such swappings always have the same effect on the policy
state, we know the policy is race-free:

Proposition 2. The following is a sufficient condition for race-freedom. For
any state s1 of the security automaton corresponding to the policy, and for any
pair of transitions with different thread identifiers starting in that state, s1

x→ y→
s2 where x is a start action or y is an end action, it holds that s1

y→ x→ s2.

Proof. These conditions imply the conditions from Proposition 1. ut

Sufficient syntactical conditions for the conditions of proposition 2 are easily
identified. For example, for the common case where the security state is a set of
permissions, a sufficient condition is that start actions only consume permissions
from the set, and after actions only add permissions.

6.2 Discussion

Are there interesting or practically relevant policies that are not race-free? A
policy that is not race-free imposes constraints not only on the client program,
but also on the API implementation and even on the scheduler. Hence, we argue
that such policies never make sense. Even if an enforcement mechanism (such
as an external execution monitor) could enforce the policy, the result of the
enforcement is most likely not what the policy writer intended to express. Policies
impose constraints on API method invocations because of the effects (such as
writing a file, reading from the network, activating a device, . . .) that these API
implementations have. A policy such as the policy in Figure 2 intends to specify
that initiation of one effect should come after the initiation of another effect. But
without further information about the API implementations and the operation
of the scheduler, there is no guarantee that enforcing this ordering on the API
invocations will also enforce this ordering on the actual effects.

In other words, the race in the policy that makes it impossible for an inliner
to enforce the policy, also makes it impossible to interpret method invocations
soundly as initiations of effects.

Hence, a policy that is not race-free either indicates a bug in the policy
(for instance, the policy writer intended to specify policy 3 instead of policy 2
– an easy mistake to make as in the single-threaded setting both policies are
equivalent), or it is an indication of a misunderstanding of the policy writer (for
instance the policy writer considers the start of the API method invocation as
a synonym of the start of the effect the API method implements).

As a consequence, the practicality of inlining as an enforcement mechanism
is not at stake, and detection of races in policies is useful as a technique to detect
bugs in policies.

7 Example Inliner

In this section we propose an inlining scheme that is secure, conservative and
transparent for race-free policies.

The state of the inlined reference monitor might possibly be updated by sev-
eral threads concurrently. The updates to this state must therefore be protected
by a global lock. A key design choice is whether to keep holding this lock during
the API call, or to temporarily release the lock during the call and reacquire it
after the call has returned.

The first choice (locking across calls) is easier to prove secure, as there is a
strong guarantee that the updates to the security state happen in the correct
order. We will see below that this is much trickier for an inliner that releases the
lock during API calls. However, an inliner that locks across calls can introduce
deadlocks in the inlined program and is thus not transparent. Consider for in-
stance an API with a barrier method B that allows two threads to synchronize
as follows: When one thread calls B, the thread blocks until the other thread
calls B as well. Suppose this method is considered to be security-relevant, and
the inliner, to protect its state, acquires a global lock while performing each
security-relevant call. For a client program that consists of two threads, each
calling B and then terminating, the inliner will introduce a deadlock, as one
thread blocks in B while the other thread blocks on the global lock introduced
by the inliner.

Even if it does not lead to deadlock, acquiring a global lock across a poten-
tially blocking method call can cause serious performance penalties.

For this reason, our algorithm releases the lock before calling an API method.
In fact, our algorithm ensures that the global lock is only held for very short
periods of time. The design and security proof of an inliner locking across calls
is given in [13].

It is worth emphasizing that the novelty in this section is not the inlining
algorithm itself: the algorithm is similar to existing algorithms developed in the
sequential setting [10, 5, 6, 9] and the locking strategy is relatively straightfor-
ward. The novelty is the correctness proof. The same proof will be applicable to
other inliners showing that, when one restricts oneself to race-free policies, these
inliners are also correct.

7.1 The Inlining Algorithm

In order to enforce a policy through inlining, it is convenient to be able to
statically decide whether a given policy clause applies to a given call instruction.
Therefore, in this example inliner, we impose the restriction on policies that they
should have simple call matching. We say a policy has simple call matching if for

Inlined label Instruction Inlined label Instruction

L: ldc SecState
monitorenter

astore 0
.
.
.
astore n− 1

beforeG1 : [eval before G1]
ifeq beforeG2

[before update 1]
goto beforeEnd
.
.
.

beforeGi : [eval before Gi]
ifeq exit
[before update i]

beforeEnd: aload n− 1
.
.
.
aload 0

ldc SecState
monitorexit

invoke: invokevirtual c.m

invokeDone: ldc SecState
monitorenter

astore n

afterG1 : [eval after G1]
ifeq afterG2

[after update 1]
goto afterEnd
.
.
.

afterGj : [eval after Gj]
ifeq exit
[after update j]

afterEnd: aload n

ldc SecState
monitorexit

afterReleased: goto done

exceptionalG1 : ldc SecState
monitorenter

[eval exceptional G1]
ifeq exceptionalG2

[exceptional update 1]
goto exceptionalEnd
.
.
.

exceptionalGk : [eval exceptional Gk]
ifeq exit
[exceptional update k]

exceptionalEnd: ldc SecState
monitorexit

exceptionalReleased: athrow

exit: iconst −1
invokestatic System.exit

done:

Added entries in exception handler array:

From To Target Type
invoke invokeDone exceptionalG1 any
L exceptionalReleased exit any
exit done exit any

Fig. 4. The inlining replacement of L: invokevirtual c.m.

any security-relevant method c.m, an invokevirtual d.m call is bound at run
time to method c.m if and only if d = c. Essentially, this means that we ignore
the issues surrounding inheritance and dynamic binding. These are orthogonal
to the results of this paper, and it has been described elsewhere how to deal with
them [10].

The inliner we propose, IEx , replaces each instruction L : invokevirtual
c.m where c.m is security-relevant by JVML code corresponding to the code in
Figure 4. The replacement contains blocks of code to update the security state
according to the before, after and exceptional clauses respectively. These three
blocks are referred to as blocks of inlined code. The security state is maintained
as static fields of an auxilliary class called SecState, created by the inliner. The
inliner locks the security state by acquiring the lock associated with the SecState

class, and stores arguments to the method call for use in event handler code.
Each piece of event code evaluates guards by reference to the security state and
the stored arguments, and updates the state according to the matching clause,
or exits, if no matching clause is found.

The Java Virtual Machine Specification [24] states that some unchecked ex-
ceptions such as InternalError or UnknownError can occur at any instruction.
In the theoretical development, we will ignore this possibility, i.e. we assume an
error-free JVM. Our implementation defensively catches any such exception and
exits the program. With such an implementation, security is guaranteed even
on JVM’s that do throw such exceptions, but clearly transparency is no longer
guaranteed should the JVM not be error-free.

7.2 Correctness Properties

In this section we show that the inliner presented above is conservative, trans-
parent, and secure for race-free policies. In view of theorem 2 this is the best we
can do: The assumption of race freedom cannot be lifted without losing trans-
parency. As mentioned, other design choices are possible: For instance we may
choose to lock across the security relevant call [13]. Such a design choice sacrifices
transparency in favour of security.

To first prove security, the key observation is the following: While the se-
quence of actions seen by the monitor might be different from the sequence of
actual actions happening, the second is actually a client-order preserving per-
mutation of the first. And hence, by the definition of race-free policy, if the first
is accepted by the monitor, then the second is necessarily also accepted by the
policy. So if the monitor allows the execution, it is actually compliant with the
policy.

Theorem 3. The example inliner IEx is secure for race-free policies.

The full proof of the theorem is provided in the appendix of this paper.
For conservativity, our proof is based on the observation that there is a strong
correspondence between executions of an inlined program, and executions of the
underlying program before inlining. From an execution of the inlined program,
one can erase all the inlined instructions and the security state, and arrive at
an execution of the underlying program. Moreover, such an execution and its
erasure have the same observable trace of actions, hence conservativity follows.

Theorem 4. IEx is conservative.

Again, a full proof is provided in the appendix. Finally, for transparency:

Theorem 5. The example inliner IEx is transparent.

Proof. Consider a policy-adherent execution E of P . Insert policy checking steps
into E to obtain a sequence of configurations E′. Then E′ is an execution of the
inlined program. This follows, by induction on the length of E, from the fact
that E adheres to the policy. ut

8 Case Studies and Benchmarks

The inlining algorithm described above has been implemented in Java using the
ASM framework [25]. We present some results and benchmarks of this inliner
in four case studies. The inliner was designed and implemented as part of the
S3MS project, a project that investigates the applicability of inlined reference
monitoring for Java applications on mobile phones. Hence, the case studies are
all Java Micro Edition applications. The applications and the corresponding se-
curity policies are available at http://www.csc.kth.se/~landreas/inlining.
The inlining was performed off-device on an Intel Core 2 CPU at 1.83 GHz with
2 Gb memory. All policies were successfully enforced by our inliner.

ImageExchange (IE) ImageExchange is a combined server/client application
that allows users to exchange images over a Bluetooth connection.
The policy in this case study restricts the program to only send the file that
was last approved by the user. We adapt the bluetooth and gui API’s slightly
to allow this policy to be conveniently formulated.

Snake (SN) This is a classic game of snake in which the player may submit the
current score to a server over a network connection.
The policy prevents data from being sent over the network after reading
from phone memory.

MobileJam (MJ) The MobileJam application is a Bluetooth GPS based traffic
jam reporter which utilizes the online Yahoo! Maps API.
The policy prevents the application from connecting to any URLs other than
those starting with http://local.yahooapis.com.

BatallaNaval (BN) BatallaNaval is a multiplayer battleship game that com-
municates through SMS messages.
In this case the policy restricts the number of sent SMS’s to a constant.

The benchmarks for the case studies are summarized in table 1. When the secu-

IE SN MJ BN

Security Relevant Invokes 2 2 4 2
Original Size of Binaries (kb) 35.2 23.2 196.2 210.7
Inlining Duration (s) 0.56 0.49 1.84 1.42
Size increase (%): 1.1 0.7 4.0 0.9

Table 1. Benchmarks for the case studies.

rity relevant methods perform IO the runtime overhead of the monitor is dwarfed
by the IO overhead, and is too small to be measured. Since most policies talk
about methods that perform IO, it is fair to say that in practice, there is close
to no performance penalty.

To determine the runtime overhead impact of inlining more precisely, a pro-
gram that invoked an empty dummy security relevant method in a loop was

constructed. The execution time of this loop was then measured before and af-
ter inlining. The inlining caused the execution time to increase from 407 ms to
1358 ms when the loop was iterated 106 times. This indicates an overhead in this
experiment of 951 nanoseconds per security relevant call. This includes the time
needed to do call disambiguation in the presence of dynamic binding (something
we left out of scope for the theoretical study, see Section 7). Given that security
relevant calls in our framework typically occur at session rate, this suggest that
the runtime overhead of inlining is in practice negligible.

To summarize, our experiments support the existing evidence [5, 6] that in-
lining is a practical enforcement technique, even in a multithreaded setting.

9 Conclusions and Future Work

Inlining is a powerful and practical technique to enforce security policies. Several
implementations of inliners exist, even for multithreaded programs. Hence, the
study of the correctness of inlining algorithms is important, and has received
a substantial amount of attention the past few years. But, these efforts have
focused on inlining in a sequential setting.

This paper shows that inlining in a multithreaded setting brings a number
of additional challenges. Not all policies can be enforced by inlining in a manner
which is both secure and transparent. Fortunately, these non-enforceable policies
do not appear very important in practice: They are policies that constrain not
just the program, but also the API or the scheduler. We have identified a class
of so-called race-free policies that do allow effective enforcement by inlining,
and we have exhibited a concrete inlining algorithm which satisfies the required
correctness properties.

A number of extensions of this work merit attention. First, we do not yet
address inheritance. This extension is relatively straightforward: In order to eval-
uate the correct event clause, runtime checks on the type of the callee object
would be interleaved with the checks of the guards. This is spelled out for the
sequential setting in [10] for C#. We do not expect any issues to carry this over
to the multithreaded setting.

Another interesting direction is to consider proof-carrying code (PCC) for
monitor inlining. The advantage of such a framework would be to allow inlining
to be performed outside the application loader’s trust boundary. We have already
realized this for the case of sequential Java, and an extension to multithreaded
Java is currently under way.

Acknowledgments Thanks to Irem Aktug, Dilian Gurov and Dries Vanover-
berghe for useful discussions on many topics related to monitor inlining. Thanks
to Jan Smans and Fabio Massacci for providing useful feedback on a draft of
this paper.

The work of Dam, Lundblad, and Piessens was partially supported by the
S3MS project. Bart Jacobs is a Postdoctoral Fellow of the Research Foundation

- Flanders (FWO). Jacobs and Piessens were partially funded by the Interuni-
versity Attraction Poles Programme Belgian State, Belgian Science Policy. Dam
holds a research position with the Swedish Research Council (VR) and is affili-
ated with the VR Linnaeus Center ACCESS. Lundblad was partially supported
by VR grant 2007-6436.

References

1. Evans, D., Twyman, A.: Flexible policy-directed code safety. In: IEEE Symposium
on Security and Privacy. (1999) 32–45

2. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: Proc. Workshop on New Security Paradigms (NSPW ’99), New York, NY,
USA, ACM Press (2000) 87–95

3. Schneider, F.B.: Enforceable security policies. ACM Trans. Information and Sys-
tem Security 3(1) (2000) 30–50

4. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst. 28(1) (2006) 175–205

5. Erlingsson, U.: The inlined reference monitor approach to security policy enforce-
ment. PhD thesis, Dept. of Computer Science, Cornell University (2004)

6. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. In:
PLDI. (2005) 305–314

7. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference moni-
toring on .NET. In: PLAS. (2006) 7–16

8. Erlingsson, Ú., Schneider, F.B.: IRM enforcement of Java stack inspection. In:
IEEE Symposium on Security and Privacy. (2000) 246–255

9. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. In: Proc. of
15th Int. Symposium on Formal Methods (FM ’08). (May 2008) 262–277

10. Vanoverberghe, D., Piessens, F.: A caller-side inline reference monitor for an object-
oriented intermediate language. In: FMOODS. (2008) 240–258

11. Chen, F., Rosu, G.: Java-MOP: A monitoring oriented programming environment
for Java. In: TACAS. (2005) 546–550

12. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: PLAS.
(2008) 11–20

13. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Provably correct inline monitoring
for multithreaded Java-like programs. Journal of Computer Security (2009)

14. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Sec. 4(1-2) (2005) 2–16

15. Ligatti, J.A.: Policy Enforcement via Program Monitoring. PhD thesis, Princeton
University (2006)

16. Viswanathan, M.: Foundations for the run-time analysis of software systems. PhD
thesis, University of Pennsylvania (2000)

17. Verhanneman, T., Piessens, F., De Win, B., Joosen, W.: Uniform application-level
access control enforcement of orginzationwide policies. In: Twenty-First Annual
Computer Security Applications Conference. (2005) 389–398

18. Dantas, D.S., Walker, D.: Harmless advice. In: POPL. (2006) 383–396
19. Shah, V., Hill, F.: An aspect-oriented security framework. In: Proceedings of the

DARPA Information Survivability Conference. (2004) 143–145
20. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specification, Third

Edition. Prentice Hall (2005)

21. Jeffrey, A., Rathke, J.: Java Jr: Fully abstract trace semantics for a core Java
language. In: ESOP. (2005) 423–438

22. Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for concurrent
objects. Theor. Comput. Sci. 338(1-3) (2005) 17–63

23. Aktug, I., Naliuka, K.: ConSpec – a formal language for policy specification. Elec-
tron. Notes Theor. Comput. Sci. 197(1) (2008) 45–58

24. Lindholm, T., Yellin, F.: Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

25. ObjectWeb: Asm - home page (February 2008)
26. Freund, S.N., Mitchell, J.C.: A type system for object initialization in the Java

bytecode language. ACM Trans. Program. Lang. Syst. 21(6) (1999) 1196–1250
27. Leroy, X.: Java bytecode verification: Algorithms and formalizations. J. Autom.

Reasoning 30(3-4) (2003) 235–269

Appendix

This appendix contains the definitions for our formal model of the Java Virtual
Machine, and proofs of the security and conservativity theorems for our example
inliner.

9.1 Formal Model of the JVM

We assume that the reader is familiar with Java bytecode syntax, the Java
Virtual Machine (JVM), and formalisations of the JVM such as [26]. Here, we
only present components of the JVM, that are essential for the definitions in the
rest of the text. A few simplifications have been made in the presentation. In
particular, to ease notation a little we ignore issues concerning overloading.

Preliminary Conventions We use c for class names, m for method names,
and f for field names. For our purpose it suffices to think of class names as fully
qualified.

To each method is associated a method definition as a pair of an instruc-
tion array and an exception handler array. Exception handlers (b, e, t, c) catch
exceptions of type c (and its subtypes) raised by instructions in the range [b, e)
and transfer control to address t, if the handler is the topmost handler in the
exception handler array that handles the instruction for the given type.

The set of values (of Java primitives and object references) is ranged over
by v. Values of object type are (typed) locations o, or the value null. Locations
are mapped to objects, or arrays, by a heap h. Objects are finite maps of non-
static fields to values. Static fields are identified with field references of the form
c.f . To handle those, heaps are extended to assignments of values to static field
references.

Configurations and Transitions A configuration C = (h,Λ,Θ) of the JVM
consists of a heap h, a lock map Λ which maps an object o to a thread id tid iff
tid holds the lock of o, and a thread configuration map Θ which maps a thread
identifier tid to its thread configuration Θ(tid) = θ. A thread configuration θ is
a stack R of activation records. For normal execution, the activation record at
the top of an execution stack has the shape (M, pc, s, l), where:

– M is a reference to the currently executing method.
– The program counter pc is an index into the instruction array of M .
– The operand stack s ∈ Val∗ is the stack of values currently being operated

on.
– l is an array of local variables. These include the parameters.

For exceptional configurations, the top frame of an execution stack has the form
(o) where o is the location of an exceptional object, i.e. of class Throwable.

Activation records for API calls are special and are discussed below.

Definition of the transition relation We only present the rules for the
bytecode instructions mentioned in the paper. The rules for the other bytecode
instructions are similar and straightforward.

Notation Besides self-evident notation for function updates, array lookups etc.
the transition rules use the following auxiliary operations and predicates:

– v :: s pushes v on top of stack s
– handler(M,h, o, pc) returns the proper target label given M , heap h, throw-

able o and pc pc in the standard way:
handler(M,h, o, pc) = handler2(H,h, o, pc) with H the exception handler
array of M
handler2(ε, h, o, pc) = ⊥
handler2((b, e, t, c) ·H,h, o, pc) ={

t if b ≤ pc < e and h ` o : c
handler2(H,h, o, pc) otherwise

– v is an argument vector
– Stack frames have one of three shapes (M, pc, s, l), (o) (where o is throwable

in the current heap), and (�) (used for API calls).

Local Variables and Stack Transitions

Θ(tid)→ θ

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ θ])

M [pc] = aload n

(M, pc, s, l) :: R→ (M, pc + 1, l(n) :: s, l) :: R

M [pc] = astore n

(M, pc, v :: s, l) :: R→ (M, pc + 1, s, l[n 7→ v]) :: R

M [pc] = athrow

(M, pc, o :: s, l) :: R→ (o) :: (M, pc + 1, o :: s, l) :: R

M [pc] = goto L

(M, pc, s, l) :: R→ (M,L, s, l) :: R

M [pc] = iconst n

(M, pc, s, l) :: R→ (M, pc + 1, n :: s, l) :: R

M [pc] = ldc c

(M, pc, s, l) :: R→ (M, pc + 1, c :: s, l) :: R

M [pc] = ifeq L n = 0
(M, pc, n :: s, l) :: R→ (M,L, s, l) :: R

M [pc] = ifeq L n 6= 0
(M, pc, n :: s, l) :: R→ (M, pc + 1, s, l) :: R

Heap transitions

Θ(tid) = (M, pc, v :: s, l) :: R M [pc] = putstatic c.f

(h,Λ,Θ)→ (h[c.f 7→ v], Λ,Θ[tid 7→ (M, pc + 1, s, l) :: R])

Θ(tid) = (M, pc, s, l) :: R M [pc] = getstatic c.f

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (M, pc + 1, h[c.f] :: s, l) :: R])

Locking instructions

Θ(tid) = (M, pc, v :: s, l) :: R
M [pc] = monitorenter Λ(v) = ⊥

(h,Λ,Θ)→ (h,Λ[v 7→ tid], Θ[tid 7→ (M, pc + 1, s, l) :: R])

Θ(tid) = (M, pc, v :: s, l) :: R
M [pc] = monitorexit Λ(v) = tid

(h,Λ,Θ)→ (h,Λ[v 7→ ⊥], Θ[tid 7→ (M, pc + 1, s, l) :: R])

Exceptional Transitions

Θ(tid) = (o) :: (M, pc, s, l) :: R
pc′ = handler(M,h, o, pc) pc′ 6= ⊥

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (M, pc′, s, l) :: R])

Θ(tid) = (o) :: (M, pc, s, l) :: R
handler(M,h, o, pc) = ⊥

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (o) :: R])

API calls API calls are treated specially, as discussed in Section 2. The rules
below only deal with invocation of API methods. Other invocations (client code
calling client code) are standard, and we don’t spell out the rule here.

Θ(tid) = (M, pc, o :: v :: s, l) :: R
M [pc] = invokevirtual c.m c ∈ API

(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (�) :: (M, pc + 1, s, l) :: R])

Exceptional return from an API method:

Θ(tid) = (�) :: R
(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (o) :: R])

Normal return from an API method:

Θ(tid) = (�) :: (M, pc, s, l) :: R
(h,Λ,Θ)→ (h,Λ,Θ[tid 7→ (M, pc, v :: s, l) :: R])

Programs and Executions For the purpose of this paper we can view a pro-
gram P as a set of class declarations determining types of fields and methods
belonging to classes in P , and a method environment assigning method defi-
nitions to each method in P . An execution E of a program P is a (possibly
infinite) sequence of JVM configurations C0C1 . . . where C0 is an initial configu-
ration consisting of a single thread with a single, normal activation record with
an empty stack, no local variables, M as a reference to the main method of P ,
pc = 0, and for each i ≥ 0, Ci →JVM Ci+1. We restrict attention to configu-
rations that are type safe, in the sense that heap contents match the types of
corresponding locations, and that arguments and return/exceptional values for
primitive operations as well as method invocations match their prescribed types.
The Java bytecode verifier serves, among other things, to ensure that type safety
is preserved under machine transitions (cf. [27]).

Thread creation To support thread creation we assume that there is a dis-
tinguished API method that has, besides the standard effect of an API call
discussed above, an additional side effect of creating an additional thread in the
configuration. The newly created thread starts with a single normal activation
record initialized to call the run() method of the object passed as a parameter
to the API method.

9.2 Proof of the Security Theorem

Since our inliner does not synchronize across security-relevant API method calls,
it is not guaranteed that updates to the inlined security state are completely syn-
chronized with the actual security relevant actions. For instance, if two security
relevant method invocations m1 and m2 happen concurrently, the following sce-
nario is possible. First, the inlined code before the m1 call is executed, then the
inlined code before the m2 call is executed, then m2 is invoked, and then m1 is
invoked. In other words, the sequence of actions as considered by the monitor
might not be equal to the sequence of actions as it actually happens. An imme-
diate consequence of this is that some policies cannot be enforced securely by
our inliner: for instance the policy in Figure 2 can not be securely enforced.

Fortunately, for the class of race-free policies, we can show that our inliner is
secure. The key observation is the following: while the sequence of actions seen by
the monitor might be different from the sequence of actual actions happening, the
second is actually a client-order preserving permutation of the first. And hence,
by the definition of race-free policy, if the first is accepted by the monitor, then
the second is necessarily also accepted by the policy. So if the monitor allows
the execution, it is actually compliant with the policy. We set out to prove this.

First some notation: We have to distinguish clearly between the actual se-
curity relevant API actions (the observable actions of the program invoking the
API) and the execution of the corresponding monitor actions (the inlined code
manipulating the inlined security state). We use the notation mon(α) for the
monitor action corresponding to the observable action α. We define a monitor

action to take place at the step in the execution that performs the inlined moni-
torexit instruction. We refer to these points in an execution as the policy commit
points.

The policy commit points can be seen as the points where the monitor “sees”
an observable action: at the policy commit point, the changes to the inlined
security state for a given observable action are made visible by releasing the lock
on the inlined security state.

An execution E now gives rise to two traces: the trace of the actual security
relevant observable actions Ts, and the trace of the monitor actions Tm. In
addition, the given execution E determines an ordering that allows us to merge
these two traces into the full trace Tf .

For example, in the scenario discussed above, if we let α1 be the observable
action of calling m1 and α2 the observable action of calling m2, then the trace
Tf = mon(α1),mon(α2), α2, α1 is the full trace that illustrates that observable
actions and monitor actions can occur in different orders.

Lemma 2. The trace Tm of monitor actions in an inlined program always com-
plies with the policy.

Proof. All updates to the security state are done under a single lock, and hence
can be serialized. Since the actions seen by the monitor correspond to the mon-
itorexit steps on that single lock, they are synchronized with the updates to
the security state. So this lemma is equivalent to saying that the inlined code
correctly implements the security automaton in a sequential setting. ut

For a given execution, we first want to make sure that any start actions that
have been monitored but not yet executed are added to the traces Tf and Ts.
More precisely: if there are mon(α) actions with α a start action by a thread tid
in Tf such that no action by tid succeeds this action in Tf , then for any such
action add α to the end of Tf and to the end of Ts. Call the resulting traces T ′f
and T ′s. It follows that Tf is a prefix of T ′f and Ts is a prefix of T ′s.

In a similar way, if there are end actions α by a thread tid in Tf such that
no action by tid succeeds this action in Tf , then add mon(α) to the end of Tf
and to the end of Tm. Call the resulting traces T ′′f and T ′m. It follows that Tf is
a prefix of T ′′f and Tm is a prefix of T ′m. T ′m complies with the policy because
of Lemma 2, and because after actions can only update the security state, they
can not break compliance with the policy.

Lemma 3. For each mon(α) action with α a start action by a thread tid in T ′′f ,
there is exactly one immediately succeeding action by tid in T ′′f , and this is the
action α. Furthermore, for each mon(α) action with α an end action by tid in
T ′′f , there is exactly one immediately preceding action by tid in T ′′f , and this is
the action α.

Proof. By induction on the length of the execution E. ut

As mentioned before, the trace Tm of monitor actions is not necessarily iden-
tical to the observable trace Ts = ω(E). But we show that T ′s is a client-order
preserving permutation of T ′m.

Lemma 4. Consider an execution E of an inlined program. The trace T ′s is a
client-order preserving permutation of T ′m.

Proof. Because of Lemma 3, we can define a function f from T ′m to T ′s that
maps each monitor action mon(α) to the immediately succeeding action within
the same thread (for α a start action), or to the immediately preceding action
in the same thread (for α an end action).

f is injective, since for any start action by a thread tid in T ′′f , only one
action by tid precedes it immediately, and similarly for return actions. Because
of the construction of T ′m and T ′s, f is also surjective, hence it is a bijection.
Hence, when we consider T ′m and T ′s as sequences of observable actions (and we
don’t care anymore about the distinction of whether this action is seen by the
monitor and hence in T ′m, or an actual observable action and hence in T ′s), f is
a permutation.

We show that f is a client-order preserving permutation from T ′m to T ′s.
Consider an after action i in T ′m and a before action j in T ′m such that i < j.
We must now prove that f(i) < f(j).

Let us call im and is the injections from T ′m and T ′s in T ′′f . Then im(i) < im(j).
We also have that, since i is an after action, is(f(i)) < im(i), and since j is a
before action, im(j) < is(f(j)). Therefore, we have that is(f(i)) < is(f(j)).
Since is is order-preserving, we have that f(i) < f(j). This means T ′s is a client-
order preserving permutation of T ′m. ut

Theorem 6. The example inliner IEx is secure for race free policies.

Proof. For any execution of the inlined program, by lemma 2, Tm complies with
the policy. Since T ′m extends Tm only with after actions, T ′m also complies with
the policy.

From Lemma 4 we know that T ′s is a client-order preserving permutation of
T ′m. Hence, by the definition of race-free policy, T ′s also complies with the policy.
Finally, since Ts is a prefix of T ′s, it also complies with the policy. ut

9.3 Proof of Conservativity

Our proof of conservativity is based on the observation that there is a strong
correspondence between executions of an inlined program, and executions of the
underlying program before inlining. From an execution of the inlined program,
one can erase all the inlined instructions and the security state, and arrive at
an execution of the underlying program. Moreover, such an execution and its
erasure have the same observable trace of actions, hence conservativity follows.

To make this precise, we first define the notion of the erasure of an execution
of an inlined program.

Definition 5. Given an execution E of IEx (S, P). We define the erasure E′ of
E by recursion on the length of E. The erasure of an execution with a single
configuration C is C, with the SecState removed from the heap. Consider an
execution ECnC

′
n+1. Let E′C ′ be the erasure of ECn. Let tid be the thread that

performes the step CnCn+1. Then we define the erasure of ECnCn+1 as

– E′C ′ if the pc of tid in Cn points to an inlined instruction
– E′C ′ followed by the configuration obtained by letting tid perform one step

in the context of the original program and state C ′.

It follows that E′ is an execution of the uninlined program.

Definition 6. Given an activation record r = (M, pc, l, s) of IEx (S, P) and an
activation record r′ = (M ′, pc′, l′, s′) of P , we say that r′ corresponds to r iff

– M = M ′

– l′ is l without the local variables introduced by the inliner
– if pc points to a non-inlined instruction then pc′ points to the same instruc-

tion and s′ is equal to s, otherwise pc′ and s′ equal the states of pc and s as
they were right before entering the block of inlined code. For instance if pc
equals beforeG1 then pc′ equals L and s′ equals l[0 . . . n− 1]s[n . . .].

Definition 7. Given a configuration C = (h,Λ,Θ) of an execution of the inlined
program and a configuration C ′ = (h′, Λ′, Θ′) of the original program P we say
C ′ corresponds to C iff

– h′ is the heap obtained by removing the SecState from h
– Λ′ is the lock map obtained by removing the SecState from Λ
– Dom(Θ′) = Dom(Θ) and for each (tid , R) ∈ Θ there is an R′ such that

(tid , R′) ∈ Θ′, |R| = |R′| and for each i ∈ [0, |R|), R′i corresponds to Ri.

Lemma 5. Given a partial execution EC of the inlined program IEx (S, P), then
for the erasure E′C ′ of EC it holds that C ′ corresponds to C and ω(E′C ′) =
ω(EC).

Proof. By induction on the length of EC. The base case is trivial. Consider an
execution ECnCn+1 of the inlined program. Let E′C ′ be the erasure of ECn. By
the induction hypothesis, we may assume that C ′ corresponds to Cn and that
ω(E′C ′) = ω(ECn). We have two cases

(1) if CnCn+1 is an execution of an inlined instruction then the erasure of
ECnCn+1 equals E′C ′. We prove that C ′ corresponds to Cn+1 and that
ω(ECnCn+1) = ω(E′C ′) by case analysis on the label of the inlined instruc-
tion.

(2) otherwise, let E′C ′C ′′ be the erasure of ECnCn+1. We prove that C ′′ cor-
responds to Cn+1 and that ω(E′C ′C ′′) = ω(ECnCn+1) by case analysis on
the non-inlined instruction.

ut

Theorem 7. IEx is conservative.

Proof. For any execution of the inlined program, Lemma 5 gives us an execution
of the uninlined program with the same trace. ut

