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Abstract

We present a formalized, fully decentralized runtime semantics for
a core subset of ABS, a language and framework for modelling dis-
tributed object-oriented systems. The semantics incorporates an ab-
stract graph representation of a network infrastructure, with network
endpoints represented as graph nodes, and links as arcs with buffers,
corresponding to OSI layer 2 interconnects. The key problem we wish
to address is how to allocate computational tasks to nodes so that
certain performance objectives are met. To this end, we use the se-
mantics as a foundation for performing network-adaptive task execu-
tion via object migration between nodes. Adaptability is analyzed in
terms of three Quality of Service objectives: node load, arc load and
message latency. We have implemented the key parts of our seman-
tics in a simulator and evaluated how well objectives are achieved for
some application-relevant choices of network topology, migration pro-
cedure and ABS program. The evaluation suggests that it is feasible
in a decentralized setting to continually meet both the objective of a
node-balanced task allocation and make headway towards minimizing
communication, and thus arc load and message latency.

1 Introduction

An important problem, made more relevant by recent interest in cloud
computing, is how to decouple computational processes from the under-
lying physical infrastructure on which they execute. One motivation for
such decoupling is to free applications from handling resource allocation is-
sues, which can instead be handled in a transparent fashion using generic,
application-independent mechanisms. Potentially, tasks can then be per-
formed at the physical machine most suited at the moment, continually
meeting global system requirements such as utilization and power consump-
tion, or task-local requirements such as a response time.

We consider the problem of runtime adaptation of tasks in the context
of a core subset of ABS [14], a language and framework for modelling dis-
tributed object-oriented systems developed in the EU FP7 HATS project.
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Following our preceding work [8, 9], we construct a networked struc-
tural operational semantics for our chosen ABS subset in rewriting logic
style [6], where objects execute on network nodes connected point-to-point
using asynchronous message passing links. We showed previously how ob-
ject migration could be supported in an efficient, transparent, and robust
(lock-free) manner using location independent routing. In the present work,
we examine how adaptation can be performed in the networked model by a
controller process running on each node.

To enable precise reasoning and experiments on adaptability, we define
three central Quality of Services (QoS) objectives which a solution for run-
time adaptation in our context can be assessed against: node load, arc load
and message latency. We abstract from many practical, implementation-
level concerns when interpreting these objectives in our setting. The load
for a specific node at a specific time is simply the number of active tasks run-
ning on it. The load for a specific arc is the number of messages traversing
the arc. The latency for a specific message is the number of hops needed to
reach its destination. We then restrict our consideration of adaptability to
the problem of how and when to migrate objects to achieve the objectives
as well as possible, given a specific network topology, ABS program, and
node-local procedure for managing migrations.

Using a simulator which implements the key parts of our semantics,
we have investigated how well objectives are fulfilled for some application-
relevant choices of network topologies, programs and migration procedures.

One potential application of our work is as a basis for a decentralized
middleware system with very few dependencies and assumptions running
on a networked (cloud) infrastructure, that allows the system provider to
achieve high resource utilization when running resource-oblivious programs
from a third party.

1.1 Contributions

We show that extending a general and reasonably practical object-oriented
language (ABS) to execute in a network is feasible, and highlight the issues
involved, from extending the semantics to concerns at implementation. The
techniques apply to similar languages. Given that a language has a formal
semantics, the extension process can be carried out formally. We also in-
vestigate parts of the design space for distributed adaptability algorithms in
our decentralized setting.

2 ABS Background

ABS [13] is a language and framework for modelling distributed object-
oriented systems, developed in the FP7 HATS project. In contrast to
design-oriented languages such as UML, ABS offers constructs for expressing

2



concurrency and the possibility to execute models according to an opera-
tional semantics descended from Creol [15]. In contrast to foundational
concurrency-oriented languages such as the π-calculus [17], ABS provides
higher-level primitives that can be used to directly model object-oriented
systems.

Core ABS [14] is a language which contains the main features of ABS:
a functional level for expressing data structures and side-effect free inter-
nal computations of distributed objects, and an object level for expressing
concurrent objects, and communication among such objects via method in-
vocation. The object level defines syntax for interfaces, classes, methods,
object creation and method calls, where there is inheritance among inter-
faces but not among classes. The object level is accompanied by a type
system and a structural operational semantics which preserves well-typing.
Hence, method invocations in Core ABS cannot go wrong at runtime for
type-checked programs; when an object makes a call to a method m using
an object identifier o, there always exists an object associated with o, which
is an instance of a class which implements an interface where m is defined.

The runtime unit of concurrency in Core ABS is a concurrent object
group (cog). A cog contains one or more runtime objects, which perform
cooperative scheduling of tasks. We use a variant of Core ABS where a single
object is the unit of concurrency rather than a cog, similar to the variant of
Albert et al. [1]. The choice is motivated by our focus on network adaptabil-
ity of individual objects and computation tasks, which becomes more compli-
cated when objects in a group must perform intermittent synchronization. In
our language variant, all individual objects can be viewed as actors, having
local store and communicating with the environment only via asynchronous
message passing. Additionally, the language variant fixes a number of mi-
nor inconsistencies in the syntax and semantics of the original Core ABS, for
example by prohibiting multiple return statements which could cause unex-
pected nonterminating behaviour. The language is described in detail at the
accompanying website (http://www.csc.kth.se/~palmskog/abs-net/).

A fragment of a Core ABS program is given as an example in Figure 1.
The CastNode interface defines a method aggregate, which, when called on
some object, is intended to perform a convergecast operation in the binary
tree rooted at that object. Specifically, this means that if an object imple-
menting CastNode is a leaf in the tree (an instance of class LeafNode), it
simply returns a locally known integer, but if the object has child nodes in
the tree (an instance of class BranchNode), aggregate is called on both of
those objects and the results are added to the local integer and returned. In
this way, the aggregate method for the object o always returns the aggre-
gate of all local values in the binary tree of objects rooted at o.

The implementation of the aggregate method in the program highlights
the use in Core ABS of futures as placeholders for results from asynchronous
method calls. The variables fLeft and fRight hold futures which ultimately
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interface CastNode {

Int aggregate ();

}

class LeafCastNode(Int val) implements CastNode {

Int aggregate () {

return val;

}

}

class BranchCastNode(Int val , CastNode left , CastNode right)

implements CastNode {

Int aggregate () {

Fut <Int > fLeft = left!aggregate ();

Fut <Int > fRight = right!aggregate ();

Int aggregateLeft = fLeft.get;

Int aggregateRight = fRight.get;

return val + aggregateLeft + aggregateRight;

}

}

Figure 1: Core ABS example interface and classes.

resolve to integer values, as indicated by their type declarations. In the right
hand side of the declarations of the futures, the delimiter ‘!’ between the
object variable name and the method name signifies asynchronous invoca-
tion, which always immediately returns a future. The usual dot delimiter
‘.’ signifies a synchronous invocation which blocks the caller until the final
result is returned without any intermediary.

Before returning the aggregate of the current object, the aggregate of
each child node is retrieved by appending .get to the variable holding the
respective future. Evaluations of assignments with this construct can be
blocking, unless an await statement was executed first with the future vari-
able involved, e.g. await fLeft?;. Executing await when the associated
future has not yet been resolved does not force the caller into busy waiting;
if there are method invocations for the object waiting be processed, con-
trol can be changed to the corresponding process at the discretion of the
scheduler, and pass back to the original invocation later.

Informally, a Core ABS runtime configuration is a bag of objects and
futures equipped with unique identifiers, along with unprocessed method
invocations. An object in the bag has values for all variables defined in
its class, a queue of processes representing received method invocations,
and possibly an active process. Futures either possess the value to which
they resolve, or a placeholder to indicate that no resolution is available.
When an asynchronous method invocation statement is executed, a method
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invocation is added to the bag, ready to be consumed by the callee. In
contrast with actor languages such as Erlang and Rebeca [19], which provide
the traditional guarantee that messages from one actor to another are always
processed in the order they are sent, the Core ABS semantics does not
prescribe any particular order for processing method invocations. In effect,
the runtime environment provides an unbounded number of one-place buffers
that objects can use to communicate with objects for which identifiers are
known.

While interface names are proper type names in Core ABS, class names
are not, and are thus only used in object creation with the new keyword. For
example, the assignment CastNode nd = new LeafCastNode(0); creates a
LeafCastNode object with the val variable set to 0.

3 Network Model and Semantics

To reason about object adaptability to environmental conditions, we bring
selected parts of the infrastructure of a distributed system into our model,
namely, network endpoints and links. Endpoints and links are modelled
as graph nodes and arcs with FIFO-ordered message queues, respectively.
Conceptually, we consider a node to consist of an object layer, where local
objects reside, and a node controller, which acts as a mediator between
the environment and node-local objects, as illustrated in Figure 2. This
node controller is not treated explicitly in the immediately related work
[8, 9]. The dashed arrow in the figure signifies that an object identifier is
known by another object and thus can be used for method invocation. The
node controller also contains logic for decision-making on adaptability. Seen
abstractly, adaptability here becomes the problem of deciding when and
where to migrate objects to achieve the QoS objectives—with the added
constraint that all reallocations must be decided locally at each node.

node u0

node controller

routing table

o1o0

interpreter

node u1

node controller

routing table

o2

interpreter

Figure 2: Nodes, node controllers, and interpreter layers.
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To achieve location transparency, the basic problem is to route messages
correctly between objects that have no prior, mutual knowledge of where
they are located. Many solutions have been examined in the literature,
including centralized or decentralized location servers, pointer chaining, and
broadcast or multicast search. Sewell et al. [18] discusses extensively the
various approaches in the literature, and their relative merits.

We have previusly proposed a novel approach to location transparency
based on location independent (also called name independent) routing [8, 9],
where the idea is to defer the maintenance of message routes to an ex-
plicit routing process executing independently of application level messag-
ing. Adapted to the approach suggested here, a node controller executing
on each network node is responsible for maintaining routing information by
exchanging routing tables with adjacent nodes in the network. This allows
object migration to be supported in a transparent fashion with only modest
extension to the runtime state.

3.1 Operational Semantics

We have defined a networked semantics for Core ABS based on our previous
work [8, 9]. Adaptability features such as routing table exchange and object
migration are modeled as nondeterministic events, with the node controller
consisting of nothing more than a globally unique identifier and a routing ta-
ble. We refer to the combination of the Core ABS functional layer, Core ABS
object syntax, and the associated structural operational semantics described
below as ABS-NET. We intend for the semantics to both guide implementa-
tion, by defining a baseline for retaining program runtime behaviour similar
to Core ABS in a distributed setting, and provide opportunities for further
theoretical analysis of specific adaptability strategies by refinement.

3.1.1 ABS-NET Runtime Configurations

In our semantics, a runtime configuration consists of two disjoint subcon-
figurations: one bag net representing the network with nodes and arcs, and
one bag cn of all objects located at nodes in the network. The fact that a
particular object is located on a particular node is not explicitly represented,
but reflected behaviourally in the reduction rules.

The bag net consists of nodes nd (u, τ), where u is an identifier assumed
to be globally unique and τ is a routing table, and arcs ar (u,Q , u ′), where
Q is an unbounded queue which buffers messages from node u to node u ′.

The bag cn consists of objects ob (o, a, p, q ,Qin ,Qout ,Σ), where o is an
identifier assumed to be globally unique, a is a store for values of instance
variables, p is the active process (if any), and q is a bag of inactive processes.
Qin is the message input queue (mailbox) and Qout is the message output
queue; both queues are unbounded. We do not represent futures directly;
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instead, each object is equipped with a structure Σ that contains a map from
future identifiers to values. When a future value is needed by an object, it
must be put into the map, which happens after a certain message is delivered
by the node controller to the object. The motivation for an implicit future
representation is mainly to keep the semantics uniform and of manageable
size; first-class futures would require extending routing and mobility beyond
objects. In an implementation, globally unique object identifiers can be
achieved during object creation by adding a serial number to the identifier
of the node the new object will be located at.

Network and object behaviour is defined in rewriting logic, in the same
style as for Core ABS. All reduction rules are implicitly specified mod-
ulo commutativity and associativity of configuration composition, with the
empty configuration ε as unit. Rules either define how a whole configuration
changes, or how a matching subconfiguration changes while the remaining
part stays unchanged. The former case is distinguished by the use of brack-
ets around the configuration in the rule, e.g. {cn}. The following is an
example of a pair of configurations describing a two-node network with a
single object located on one of the nodes:

{nd (u, τ) ar (u,Q , u) ar (u,Q ′, u ′) nd (u ′, τ ′) ar (u ′,Q ′′, u ′)} {ob (o, a, p, q ,Qin ,Qout ,Σ)}

The key rules for node controller and object behaviour are described
below in Section 3.2 and Section 3.3, respectively. The complete language
definitions, including reduction rules, for both the Core ABS variant and
ABS-NET are available on the accompanying website (http://www.csc.
kth.se/~palmskog/abs-net/).

3.1.2 Handling Future Resolution

When representing futures implicitly as mappings stored in objects, there
are at least two distinct strategies for how to ensure that future values are
delivered through the network to the objects that need them, echoing the
eager and lazy evaluation strategies in functional programming. In both
strategies, the object which receives a message with a method call has an
obligation to send back a message with the future value to the caller. The
main difference between the strategies concerns what to do when an object
shares a future identifier with another object by sending it as a parameter
in a method call, as in the following Core ABS fragment:

Fut <Int > fArg = obj1!getArgument ();

Fut <Int > fResult = obj2!getResult(fArg);

Int result = fResult.get;

The eager strategy assumes that all objects which receive a future identifier
will attempt to retrieve the associated value; hence, whenever futures are
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transmitted, some action is taken which ultimately results in the resolved
values of those futures being sent to the callee. In a lazy strategy, no partic-
ular future-related action is taken by the caller or any other entity. Instead,
an object that actually needs a particular future value at run time requests
it by sending special message, which is routed to the original object which
originated the future identifier. The originating object then responds with
a message containing the future value, once it becomes available.

Two drawbacks of an eager strategy are (1) that method call parame-
ters must be inspected for occurrences of future identifiers, even when they
are deeply nested in data structures, and (2) that messages containing fu-
ture values are sent unnecessarily when callees simply ignore future identifier
arguments. The lazy strategy avoids both of these drawbacks, but has draw-
backs of its own. For example, retrieval of a future value, which can be costly
and time-consuming, cannot happen concurrently with the processing that
occurs before the future is needed. This means that if there is a sequence of
blocking .get operations without await, all actions to retrieve the values
will happen serially.

We have chosen to use an eager strategy for future resolution in our
semantics. Specifically, each object maintains a list of futures for which it
is obligated to forward resolved future values, and where those resolutions
should be sent. Whenever a future value is shared with another object,
e.g. through the arguments of a method invocation, the list is updated
accordingly. When the object retrieves a resolved future value, the value
is saved and forwarding by message passing according to the list becomes
possible. Because futures can resolve to other futures, the forwarding list
may need to be updated when a new future value is added. One reason for
selecting this approach is that it is reasonably straightforward to pinpoint
where (i.e., in which reduction steps) the future list, or map, needs to be
updated, and what data needs to be considered.

3.1.3 Adaptability Assumptions

In the semantics, the Core ABS program being executed is assumed to be
available unaltered at all nodes. The program is therefore not explicitly
represented in the runtime configuration. Initially, we consider only net-
works that remain static over the course of program execution. Analysis of
benignly dynamic networks is a planned extension, but we consider crash
failures and byzantine failures out of scope . On the same note, we also
assume that messages sent between adjacent nodes cannot be lost—only
ignored indefinitely as far as fairness permits.

We also assume that the behaviour of the program running on network
nodes is nonterminating and cyclical. This assumption is motivated by our
focus on adaptability; for adaptations to current conditions to have a chance
of conveying benefits, similar conditions must hold in the future. Equiva-
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lently, if future conditions are random independently of current conditions,
there is no obvious payoff in an adaptation strategy.

3.2 Node Controller Behaviour

The node controller’s relationship with the interpreter layer residing on the
node is symbiotic. On one hand, the node controller provides message de-
livery services and callback functions to obtain new globally unique object
identifiers for objects residing in the interpreter layer. On the other hand,
the node controller triggers object movement by using callback functions
that the interpreter layer makes available. We assume the node controller is
aware, through its interaction with underlying network layers, of all nodes
adjacent to the node it resides on, and can communicate with node con-
trollers at adjacent nodes. As mentioned earlier, in the model, such com-
munication takes place through a buffer at an arc. In addition, each node
controller is equipped with a self-loop arc that serves as the default route
for messages that cannot immediately be routed to a neighbour node. Since
there is no upper bound enforced on communication delays, the node con-
troller always runs the risk that information received from the outside world
is out of date.

Node controller behaviour is given in the semantics by the possible re-
ductions on net configurations. There are two main kinds of reductions:
labelled and unlabelled. Labelled reductions define how the node controller
exchanges information with the interpreter layer, while unlabelled reductions
define actions that can be taken independently of the interpreter state, such
as sending and receiving routing messages. Similarly, interpreter behaviour
is given by reductions on cn configurations, which are also labelled or un-
labelled. The whole state of the system at any time is defined as a pair of
a net and a cn configurations, with a system evolution step being either an
independent reduction by one member of the pair or a mutual transition on
matching labels. The node controller transition rules related to transmission
of routing tables (Table messages) are straightforward and unlabelled, with
the condition u ′ 6= u ensuring that node controllers do not send themselves
messages through the self loop queue:

(net table send)

u ′ 6= u

Q
enqueue (Table (τ))−−−−−−−−−−−−→ Q ′

nd (u, τ) ar (u,Q , u ′)
→ nd (u, τ) ar (u,Q ′, u)

(net table recv)

Q
dequeue (Table (τ ′))−−−−−−−−−−−−→ Q ′

τ
update (τ ′,u′)−−−−−−−−−→ τ ′′

ar (u ′,Q , u) nd (u, τ)
→ ar (u ′,Q ′, u) nd (u, τ ′′)

In contrast, a message msg between objects (either a Call message for
a method invocations or a Future messages for a resolved future) requires
two labelled rules for sending and receiving it from the object layer, and one
unlabelled rule, for routing between nodes when necessary:
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(net msg recv out)

Q
dequeue (msg)−−−−−−−−−→ Q ′

dest (msg) = o o ∈ τ

ar (u ′,Q , u) nd (u, τ)
tr (o,msg)→ ar (u ′,Q ′, u) nd (u, τ)

(net msg send in)
o ∈ τ dest (msg) = o′

next (τ, o′, u) = u ′

Q
enqueue (msg)−−−−−−−−−→ Q ′

nd (u, τ) ar (u,Q , u ′)
tr (o,msg)→ nd (u, τ) ar (u,Q ′, u ′)

(net route further)

Q1
dequeue (msg)−−−−−−−−−→ Q ′1 dest (msg) = o o /∈ τ

next (τ, o, u) = u ′′ Q2
enqueue (msg)−−−−−−−−−→ Q ′2

ar (u ′,Q1, u) nd (u, τ) ar (u,Q2, u
′′)

→ ar (u ′,Q ′1, u) nd (u, τ) ar (u,Q ′2, u
′′)

The condition o ∈ τ is to be interpreted as saying that the object o is
registered in the routing table τ as being located on the current node. Note
also that, when an object sends a message to itself or some other object
located on the same node, it will be the case that u ′ = u, and hence the self-
loop arc will be used in the reduction. The auxiliary function dest simply
returns the first argument in a message, which for the related message types
is always the identifier of the destination object.

The rules for moving objects between node controllers are similar to
those for passing messages to objects, with the main difference being that
no routing is involved for deciding the migration direction. The rules permit
objects being passed around between nodes indefinitely without ever letting
the related tasks finish, but implementations will typically want to exclude
such executions. Note that both the sender and the receiver needs to update
their respective routing tables via auxiliary functions to reflect the new
object allocation:

(net object send in)
o ∈ τ u ′ 6= u

τ
replace (o,u′,1)−−−−−−−−−→ τ ′

Q
enqueue (Object (object))−−−−−−−−−−−−−−−→ Q ′

nd (u, τ) ar (u,Q , u ′)
mv (object)→ nd (u, τ ′) ar (u,Q ′, u ′)

(net object recv out)
id (object) = o

Q
dequeue (Object (object))−−−−−−−−−−−−−−−→ Q ′

τ
replace (o,u,0)−−−−−−−−−→ τ ′

ar (u ′,Q , u) nd (u, τ)
mv (object)→ ar (u ′,Q ′, u) nd (u, τ ′)

The semantics abstracts from concerns how the routing table τ is con-
cretely represented, specifying its properties only with the help of the auxil-
iary functions update, next, register and replace. To achieve the possibility
of convergence, implementations of these functions must fulfill various post-
conditions, e.g., that old routes are replaced with new ones in the result of
update.

The one remaining reduction rule for node controllers concerns creation
of objects, which uses the label rg (for ‘registration’):
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(net new object in)
fresh (o′) o ∈ τ

τ
register (o′,u,0)−−−−−−−−−−→ τ ′

nd (u, τ)
rg (o,o′)→ nd (u, τ ′)

The condition fresh (o′) is meant to ensure that the new object iden-
tifier is globally unique, which translates to there being no such identifier
registered in the routing tables of any node in the network. The condition
o ∈ τ is needed to ensure that the object o which spawned the new object
is actually located on the node in question.

For the sake of an example of how the rules work, assume the object o
is located on the node u, and an object with identifier o ′ is located on the
adjacent node u ′. Suppose msg is a Call message being sent from o to o ′.
Suppose the queue Q in the arc between the two nodes is initially empty,
and that the queue Q ′ denotes the queue that only contains msg . The
following reduction sequence then describes how the partial state involving
these nodes and the arc between them evolves, when the message is passed
from o to o′:

nd (u, τ) ar (u,Q , u ′) nd (u ′, τ ′)
tr (o,msg)→ nd (u, τ) ar (u,Q ′, u ′) nd (u ′, τ ′)

tr (o′,msg)→ nd (u, τ) ar (u,Q , u ′) nd (u ′, τ ′)

Another example starting from the same state involves the object object
with identifier o migrating from u to u ′. Let Q ′′ be the queue that only
contains the message Object (object). We then get the following sequence
of reductions:

nd (u, τ) ar (u,Q , u ′) nd (u ′, τ ′)
mv (object)→ nd (u, τ ′′) ar (u,Q ′′, u ′) nd (u ′, τ ′)

mv (object)→ nd (u, τ ′′) ar (u,Q , u ′) nd (u ′, τ ′′′)

Here, τ ′′ is the routing table τ updated with the fact that o is now found
in the direction of u ′, while τ ′′′ updates τ ′ with the fact that o is located on
the current node u ′.

3.3 Object Behaviour

The reduction rules in the Core ABS semantics which involve only a single
object and its internal state have been transferred essentially unchanged
into unlabelled interpreter layer reduction rules. For example, the following
Core ABS reduction rule:
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(cond true)
JbKa ◦ l = True

ob (o, a, {l |if b{s} else {s′} sp}, q)
→ ob (o, a, {l |s sp}, q)

is translated into the following rule in ABS-NET:

(abs cond true)
JbKa ◦ l = True

ob (o, a, {l |if b{s} else {s′} sp}, q ,Qin ,Qout ,Σ)
→ ob (o, a, {l |s sp}, q ,Qin ,Qout ,Σ)

In contrast, transitions that involve multiple objects or futures are trans-
lated into either transitions involving message passing or labelled rules for
exchanging data with the node controller. For object creation, both the node
controller rule net new object in given above and the following rule for
the interpreter layer need to be involved:

(abs new object out)
init (C ) = process
JeKa ◦ l = v
atts (C , v, o′) = a ′

forwards (futsof (v), o, {o′},Σ) = Σ′

ob (o, a, {l |x = newC (e); sp}, q ,Qin ,Qout ,Σ)
rg (o,o′)→ ob (o, a, {l |x = o′; sp}, q ,Qin ,Qout ,Σ

′)
ob (o′, a ′, idle, process, (), (), [ ])

When such a mutual transition has taken place, the new object has been
properly added to the interpreter layer, and its globally unique identifier
registered on the node of the object that spawned it. The init and atts
auxiliary functions are unchanged from Core ABS, and construct the ini-
tial task of the object as given in the corresponding class definition, and
initializes variables based on given arguments, respectively. The auxiliary
function forwards produces an update to the forwarding obligations in Σ to
include futures in the argument list.

Given that the semantics abstracts from details on marshalling and
passes object states directly in messages, the interpreter layer rules for
object mobility, which interact with the rules net object send in and
net object recv out above, are very straightforward:

(abs object send out)

{object cn} mv (object)→ {cn}

(abs object recv in)

{cn} mv (object)→ {object cn}

Although the rules for actually generating object-addressed messages
are relatively complex due to the forwarding of futures, the rules for passing
messages back and forth with the node controller are uncomplicated since
eligible messages have been put in the out queue of the object:
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(abs msg send out)

Qout
dequeue (msg)−−−−−−−−−→ Q ′out

ob (o, a, p, q ,Qin ,Qout ,Σ)
tr (o,msg)→ ob (o, a, p, q ,Qin ,Q

′
out ,Σ)

(abs msg recv in)

Qin
enqueue (msg)−−−−−−−−−→ Q ′in

ob (o, a, p, q ,Qin ,Qout ,Σ)
tr (o,msg)→ ob (o, a, p, q ,Q ′in ,Qout ,Σ)

4 Adaptation

We consider three QoS objectives which runtime adaptation solutions can
be assessed against: node load, arc load and message latency.

In our setting, the definition of node load is simple but coarse grained:
the load on a node u is the number of objects located on u with active tasks.
One advantage of this measure is that it is an intrinsic property of runtime
configurations, rather than something extrinsic to our model such as proces-
sor load or the loadavg measure available in many Unix operating system
variants. We need a model-intrinsic measure of load to enable reasoning at
an abstract level about convergence to balanced allocations and that loads
stay within a certain range. One disadvantage of the approach is that it
fails to take into account the varying use of memory and processing power
among tasks. However, in an implementation, a more fine-grained measure
of load can be adopted, as long as it is linear in the number of active tasks.

We define the load of a particular arc as the number of messages travers-
ing it. Hence, global minimization of arc load means that a minimal number
of inter-node messages are sent overall, with respect to the current state of
routing tables at nodes. Unless all routing tables are optimal (minimum
stretch), however, there is no guarantee that the number of hops, i.e., la-
tency, of a particular object-addressed message is minimal.

4.1 Node Load Balancing

Although we wish to simultaneously meet all our QoS objectives fully, we
consider node load balancing our primary concern. Load balancing solutions
are also relatively well-studied in the literature, making it easier to find a
good starting point.

Azar et al. [3] consider the problem of achieving balanced allocations
in the framework of stochastic processes, where it is viewed as stepwise
allocations of balls into bins. They highlight the use of greedy schemes for
quickly converging to a ball-to-bin assignment where the maximum number
of balls in any bin is minimized. The main drawback of this approach in a
distributed setting is the reliance on atomic, single assignments of a ball to a
bin at each algorithm step. Even-Dar and Mansour [11] study load balancing
in a distributed setting where allocations are not necessarily done one-at-
a-time. They give a distributed algorithm for selfish rerouting that quickly
converges to a Nash equilibrium, which corresponds to a balanced resource
allocation. However, at each round, locally computing a new allocation
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requires knowing precisely all loads in the system, which is complicated and
costly to find out in the current setting.

Berenbrink et al. [4] describe and analyze fully distributed algorithms
which require only local knowledge of the total number of resources and the
load of one other resource to perform a single task migration step. The al-
gorithms, some of which have attractive expected time for convergence, can
be straightforwardly translated to a synchronous, round-based distributed
setting, and further, e.g., via synchronizers [2], to a fully asynchronous set-
ting. One important assumption made in the algorithm analysis is that a
task can migrate to any other resource in a single concurrent round. For this
property to hold, the underlying network graph must be complete, which
we do not generally assume.

A factor in the convergence time is whether neutral moves are allowed,
i.e., whether a migration can happen even when, as far as can be told locally,
the move does not result in a more balanced allocation but merely an equally
good one. If the network graph is sparse, and the number of active tasks an
order magnitude greater than the number of nodes, allocations where the
difference in load between any two neighbours is one but the maximal load
difference is in the order of the graph diameter are possible. Such allocations
clearly cannot be improved upon without neutral moves.

The problem of oscillating behaviour during task balancing can be mit-
igated by the use of coin flips before finalizing decisions to migrate tasks,
as in the algorithms of Berenbrink et al. Oscillation can be made worse by
information becoming stale, which is a fact of life in asynchronous systems.
If the information is not too stale, however, the number of oscillation periods
can sometimes be bounded [12].

4.2 Minimizing Communication and Other Objectives

The literature on load balancing related to scientific computing contains
work on simultaneously optimizing task allocations and communication over-
head. For example, Cosenza et al. [7] give a distributed load balancing
scheme for simulations involving agents moving in space from worker to
worker. The scheme, which is validated experimentally, optimizes both
worker load and communication overhead between workers, but assumes
only a small area of interest for each agent, with agents unable to commu-
nicate with other agents outside this area. In the current work, objects can
communicate whenever object identifiers are known to the sender, making it
harder to minimize communication overhead. Catalyurek et al. [5] describe
how to use hypergraph partitioning to minimize both communication volume
and migration time of tasks for parallel scientific computations. However,
the repartitioning is performed in batch and requires complete, immediate
knowledge of the data and computations on each node.

Querying the load of neighbours before deciding where to migrate an
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object can be costly in terms of arc load, and information received previously
may not be accurate. Many load balancing algorithms therefore have as a
feature that the number of load queries sent is minimal when migrating a
resource. A third measure which is discussed in the literature which we do
not consider is the cost in terms of time and messaging for migration itself.

5 Evaluation

In addition to the theoretical results on ABS-NET described elsewhere [8, 9],
we have evaluated ABS-NET by developing a simulator for running ABS
programs in a network of nodes according to our semantics. We have run
the simulator with a variety of network node topologies, programs and object
migration policies.

5.1 Simulator

Our simulator’s main purposes are to serve as a proof-of-concept for ABS-
NET and to allow us to run various adaptability case studies with particular
programs and topologies. Specifically, we are interested in studying conver-
gence properties of object migration policies in practice, and in showing that
our approach of distributed execution scales to networks with many nodes.
There are several other ways of executing ABS programs developed in the
HATS project [10], but the main feature we need that is absent from all of
them is object mobility between nodes or sites. Also, in contrast with most
of these ABS backends, which aim to provide an execution platform for the
full ABS language, the simulator only supports a subset of the Core ABS
language; notably, the await statement is not supported.

The simulator is implemented in Java. Each node controller is imple-
mented as a Java thread, which communicates with other controllers through
TCP sockets, using the KryoNet network library [16]. One reason for choos-
ing to use sockets is to enable to scale simulations over several physical
machines and a large number of simulated network nodes. All node con-
trollers in the network have a representation of the abstract syntax tree of
the ABS program being executed, which is generated from ABS program
code by the lexing and parsing frontend shared by most ABS backends.

As in the conceptual model and the formal semantics, a node controller
can have zero or more objects, each having at most one active task. An active
task has a reference to the statement currently being executed in the abstract
syntax tree. We call an object active if it has an active task. Scheduling
of active tasks is done at the node controller level in a round-robin fashion
for active objects. More precisely, the scheduler deterministically steps all
active tasks, checks for active objects, and then repeats the process on the
new set of active tasks.
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We implement statement execution by interpretation. The main reason
for this choice is to enable easy serialization of objects between executing
statements; to get immediate results from load balancing, we must be able
to migrate active objects. One drawback of using interpretation is that local
execution is slow and resource-demanding compared to the standard ABS
backends.

A node controller is associated with a unique TCP port on the host sys-
tem. Besides a list of neighbour handles, which abstract over underlying
sockets, and a list of local objects, the node controller maintains a rout-
ing table. The routing table is broadcast to neighbours after entries have
been changed or added as a result of statement execution or incorporation
of routes from neighbour messages. Hence, except after a short interval
with many updated locations, we expect routing tables to be up-to-date or
nearly so. The node controller also stores incoming messages that cannot
be processed locally or rerouted.

Network topology setup and program loading is handled by scripting on
top of a custom simple command-line interface (CLI). When starting up,
a node controller is assigned a migration policy through the CLI, which is
assumed to be the same for all node controllers in the network. A migration
policy is based on one of the adaptation strategies described below.

By default, the simulator starts the initial task of the initial object on
a single startup node. In all our programs, the initial task creates all the
objects used for the duration of the program. Migration and logging does
not commence until a method with the name setupFinished is called on
some object. There are several reasons for this kind of initialization; it is
easier to predict load balancing behaviour with a fixed set of objects, and it
is problematic to create new objects on the fly without proper distributed
garbage collection, which we have not implemented.

One desirable feature that the simulator currently lacks is control of link
characteristics, such as delays.

5.2 Scenarios

There are many parameters to consider when setting up interesting scenarios
for studying adaptation via simulations, as outlined below.

Network configuration The size and topology of the network. Large and
dense networks obviously give more overhead in the form of messaging
(e.g., routing and load), making simulations slower.

Object behaviour The number of objects generated by the program, inter-
object communication patterns, and the fraction of objects with active
tasks over time. In practice, this means selecting the appropriate ABS
program and adjusting some method parameters.
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Adaptation strategy This includes both the logic for deciding when and
where to migrate objects, and for messaging to exchange information
used as basis for decisions.

By necessity, we have explored only a small cross-section of the possible
parameters, at this initial stage of the work.

5.2.1 Network Configurations

The possible sizes and configurations of networks to be simulated are limited
by the performance of the prototype simulator. Currently, highly connected
topologies with in the order of 25 network nodes can be simulated in rea-
sonable time. On this note, we limit the evaluation to networks with three
distinct underlying network topologies along the continuum from sparsely to
fully connected: grids, hypergraphs and full meshes. Our base initial setup
for each topology has 32 nodes.

Since the simulator scales to at least in the order of 100 nodes for sparsely
connected topologies, we also investigate grids larger than 32 nodes for some
scenarios to compare results.

5.2.2 Benchmark Programs

We have developed a number of ABS programs specifically to run in our sim-
ulator. All programs share the characteristic that they have a setup phase,
where a fixed number of objects are initialized, and a phase where the gener-
ated objects perform some computation, possibly involving communication;
there are no short-lived dynamically created objects. For all programs but
one, which implements a distributed hash table (DHT) algorithm, commu-
nication patterns among generated objects follows straightforwardly from
the code. This makes it easier to follow what happens during a simulation
and to reason about how far an allocation of objects to nodes is from the
optimum. After running initial simulations, we have adjusted parameters in
our programs, and in some cases added functionally redundant instructions,
to get constant and reasonably consistent load and messaging, since our mi-
gration procedures consider mainly objects with active tasks. With spurious
activity among nodes, messaging and load varies greatly, and progress over
time becomes hard to discern. Sometimes this is due to behaviour inherent
to the program, as in the convergecast program described in Section 2, which
gives rise to periodic bursts of messages. We focus on programs with more
consistent behaviour. Programs are available for download in full at the
accompanying website (http://www.csc.kth.se/~palmskog/abs-net/).

IndependentTasks.abs The starting task generates objects, and each gen-
erated object is called upon to perform a long-running task. There
is no communication among workers—only briefly at startup between
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the coordinator object, which initializes and assigns tasks, and the
generated objects. Since there is no communication, an optimal al-
location is simply a completely even distribution of objects to nodes,
regardless of the network topology.

Ring.abs The starting task generates objects which know the identifiers of
the next object in the ring. The last object generated gets the identifier
of the first object. The first object, when called, calls its next object,
and so on, until the object which has the first object as next object is
reached. In the computation phase, many such calls traverse the ring
simultaneously.

Star.abs An object star configuration consists of a center object and one or
more fringe objects. The fringe objects in the star continually commu-
nicate with the center object, but not among themselves. The program
builds a number of independent of object star configurations.

ChordDHT.abs An implementation of the Chord DHT algorithm [20]. Key-
value mappings are distributed between a number of nodes, which all
support a put/get interface to clients. Nodes are arranged in a ring,
but aside from references to their neighbours, each node has log(n)
“fingers” to non-adjacent nodes, where n is the size of the keyspace.
The addition, or join, of a node to the ring places the new node at
a particular position based on its identifier and can trigger global re-
configuration of the ring. During setup, 128 nodes are joined to the
chord, and each node becomes associated with either a producer ob-
ject, which continually puts values into the DHT, or a consumer object,
which continually attempts to retrieve values from the DHT.

5.2.3 Adaptation Strategies

We have generally restricted ourselves to strategies that as a first priority
balance out load evenly among nodes in the network. As a consequence, a
simulated node controller continually informs neighbours nodes of its load
when appropriate, and receives load messages from neighbours in turn, re-
gardless of the migration procedure used.

In the simulator, each migration policy defines a callback method which
takes the affected node controller as a parameter. The callback method
is invoked, and can possibly result in the migration of several objects to
neighbour nodes.

Berenbrink et al. An adapted version of the selfish distributed load bal-
ancing algorithm by Berenbrink et al., which does not allow neutral
moves. One notable difference in the simulator implementation from
the abstract description given in Algorithm 1 is that only a fixed small
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number of objects (20) have the possibility to migrate in each cycle,
because of limits on the size of message buffers.

Berenbrink et al. with neutral moves An adapted version of the self-
ish distributed load balancing algorithm by Berenbrink et al., which
does allow neutral moves, and therefore is only expected to converge
to a completely stable state after a long time, exponential in the size
of the network. As determined experimentally, only migrating one or
two objects per cycle leads to significantly less oscillation of objects
than when directly implementing the abstract description given in Al-
gorithm 2.

Berenbrink et al. with communication intensity A variant of the pre-
ceding policy, where objects are are selected for migration based on
their affinity to the (randomly) chosen neighbour node, as determined
by their communication history with objects in the neighbour node’s
direction. The communication history is a list of other objects that
a given object has communicated with recently, as given by abstract
object-local time, defined by the number of tasks finished since ini-
tialization. The affinity of an object to the neighbour node is then
quantified as the number of objects in the communication history that
are located in the direction of the node, according to the routing table.

Weighted neighbour load difference Once every cycle, an object and
an adjacent node are chosen uniformly at random and independently.
Then, a probability of migration is calculated and enacted based on
the difference in load between the current node and the chosen node,
with probability 1 for a difference of 10 or more, and probability 0
for a negative difference. Specifically, if the load difference is d, the
probability of migration becomes d

10 , adjusted to closest number in the
interval [0, 1].

Weighted neighbour load difference with communication Given a ran-
domly chosen object and adjacent node as in the previous policy, we
define the probability of migration according to communication inten-
sity as the number of entries in the object’s communication history
found in the direction of the node, divided by the total number of
entries in the history. This probability is then combined via weighted
averaging with the neighbour load difference probability to define the
weighted neighbour load with communication policy. We have used
the weight 0.2 for the communication intensity probability and 0.8 for
the neighbour’s load probability.
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Algorithm 1 Berenbrink et al. load balancing cycle.

for each active object o do
u′ is a neighbour chosen uniformly at random
l is the current load
l′ is the last known load of u′

if l > l′ + 1 then
send o to u′ with probability 1− l′/l

end if
end for

Algorithm 2 Berenbrink et al. load balancing with neutral moves cycle.

for each active object o do
u′ is a neighbour chosen uniformly at random
l is the current load
l′ is the last known load of u′

if l > l′ then
send o to u′ with probability 1− l′/l

end if
end for

5.3 Scenario Objectives

Since our primary objective is to balance node load evenly, we record the
load of all individual nodes over time, and then show maximum load and load
standard deviation. For scenarios with little to no object communication,
these are the only measures that are relevant with respect to our objectives.
For scenarios with significant messaging, we also consider the number of
object-related messages sent (i.e., Call and Future messages) by each
node between sampling intervals—with the average number of messages and
standard deviation shown. We do not count messages sent by a node to itself
via the self-loop arc, since such messages need not go through a physical link
in an implementation.

We sample the required quantities from simulations at a fixed global
rate, corresponding roughly to a certain number of transitions (1000) in the
semantics with imposed fairness via round-robin scheduling. The imposed
fairness provides a degree of synchrony in the simulated network.

5.4 Results

Below, we give an overview of the results from our simulations of the sce-
narios described in the previous sections.
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5.4.1 Simulations of IndependentTasks.abs

The program creates 201 objects in total: one starting object which becomes
inactive after initialization and 200 objects that each have a task that runs
for the course of the program.

As expected, the algorithm by Berenbrink et al. without neutral moves
converges very quickly and stays unchanged with no migrations after reach-
ing a state where neighbour load differences are at most one. For most of the
runs on a 32-node hypergraph network topology, the stable state coincided
with a completely balanced allocation, or very closely so. For the case of
a 32-node grid, the stable allocation was in almost all cases some distance
from a fully balanced one.

The algorithm variant with neutral moves and two migrations per cycle
converges to an almost-stable state quite quickly on a hypergraph, but con-
tinues to have minor oscillation of objects. With the same algorithm but
five migration allowed per cycle, there is considerably more oscillation going
on after coming close to a balanced allocation. On a grid topology, where a
stable allocation can be further away from a balanced allocation, allowing
neutral moves gives better results than disallowing them, as expected.

The maximum load and the standard deviation of the load over time
for the 32-node hypergraph network topology is shown in Figure 3 and
Figure 4, respectively. The corresponding measures over time for an 8 × 4
grid topology are shown in Figure 5 and Figure 6, respectively. For a grid,
the gain from using neutral moves is most distinctly recognized in the lower
standard deviation compared to the algorithm without neutral moves in
Figure 6. Graphs measuring the program on a 32-node complete network
graph are essentially the same as for the hypergraph case, and therefore
omitted.

5.4.2 Simulations of Star.abs

In the star program, we construct stars precisely so that each node can
hold a whole star, and there is precisely one node per network node. In an
optimal allocation, therefore, there are no node-to-node message exchanges
at all; all messages are sent locally.

We expected the pure load balancing policies to have markedly worse
results than the policies taking inter-object communication intensity into
account. In Figure 7, the standard deviation of the number of sent mes-
sages over time is shown. In Figure 8, the average number of sent messages
over time is shown. In both cases, the measurements have been smoothed
out via averaging over five samples to reduce noise. As can be seen in the
figures, there is a distinct improvement with respect to messages sent when
using the algorithm by Berenbrink et al. augmented with message intensity
comparisons when compared to the other policies, although it is quite far

21



0 50 100 150 200 250 300 350 400
0

10

50

100

150

200

k transitions

gl
ob

al
m

ax
lo

ad

Berenbrink et al.

Berenbrink et al. w/ neutral 2
Berenbrink et al. w/ neutral 5

Figure 3: Global max load in hypergraph for IndependentTasks.abs.
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Figure 4: Load std. deviation in hypergraph for IndependentTasks.abs.

from the optimum. The algorithm using probabilistic weighting of load and
messaging seems to improve the most over time, although it performs sim-
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Figure 5: Global max load in grid for IndependentTasks.abs.
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Figure 6: Load standard deviation in grid for IndependentTasks.abs.

ilarly to the messaging-augmented load balancing algorithm by Berenbrink
et al.
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Figure 7: Std. deviation of sent messages for hypergraph in Star.abs.
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Figure 8: Avg. sent messages for hypergraph in Star.abs.

With all the tested migration strategies for the hypergraph, load be-
came evenly balanced relatively quickly, as seen in Figure 9, similarly to
hypergraphs when running IndependentTasks.abs. Hence, there was no
significant avoidance of messaging by communicating objects clustering at
a few specific nodes.

Because of the simplicity of the object communication graph and the
fact that it is possible to reach an allocation where no inter-node communi-
cation takes place, it is worthwhile to illustrate how near specific algorithms
can get after many (1000) cycles, for comparison. In a given allocation,
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Figure 9: Std. deviation of load for hypergraph in Star.abs.

each object has a total distance in hops to the other object it communicates
with. For fringe objects, the total distance is the the number of hops to its
center object, but center objects have total distance equal to the sum of all
distances to its fringes. In an optimal allocation, all centers (and all fringes)
have total distance zero. In Figure 10, gray bars show the distribution of
total distance among the 32 center objects on a hypergraph for the load
balancing algorithm by Berenbrink et al. The black bars show the distri-
bution of total distances of the objects for the algorithm by Berenbrink et
al. augmented with message intensity comparisons. The distributions inter-
sect, but the former algorithm fares distinctly worse, with most centers in
the 10–20 distance range, while the latter algorithm has most centers in the
6–12 distance range.

Results for Star.abs on a grid topology give a more pronounced ad-
vantage to the two migration procedures which take message intensity into
account. Of those procedures, the Berenbrink et al. variant produces the
least messaging, but trends are largely the same as for the hypergraph case;
hence, we omit plots. For the case of a complete topology, the amount
of messaging was virtually the same for all procedures. One intuition for
why this is the case is that it becomes much harder to improve upon an
allocation in a situation where migrations are helpful only when communi-
cating objects end up on the same node and there is no corresponding loss
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Figure 10: Object distance distribution for hypergraph in Star.abs.

in proximity to another object.

5.4.3 Simulations of Ring.abs

When running a ring of 129 objects on a 32-node grid, there are balanced
allocations with all but one node having 4 objects, where all objects that
communicate are either on the same node or adjacent nodes. The idea is that
two of the objects on a node are part of a segment of the ring, while the other
two are part of another segment coming back the other way. Such allocations
lead to few inter-node messages being needed for a method invocation that
involves the whole ring. Almost all objects then have a total distance of one
to the objects they communicate with.

In Figure 11, the standard deviation of sent messages of a 129-object ring
for a grid topology is shown. Here, both the solutions which take message
intensity into account show considerable improvement over time. This is
also reflected in the average number of messages sent over time shown in
Figure 12. The eventually lower number of messages sent are not due to
clustering of many objects on a few nodes, as shown by the eventually low
standard deviation for all migration strategies in Figure 13.

In Figure 14, gray bars show the distribution of total distance among
all ring objects on a grid to the objects they communicate with, after 1000
migration cycles using the algorithm by Berenbrink et al. Black bars show
the distribution for the algorithm by Berenbrink et al. augmented with
message intensity comparisons. There is overlap, but the latter algorithm
results in many more objects with total distance between 1 and 5. However,
both distributions are quite far from being optimal.

Similarly to for Star.abs, the performance trend in messaging over time
is largely the same on a grid and hypergraph topology for Ring.abs. The
main difference on a hypergraph is that procedures which take message in-
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Figure 11: Std. deviation of sent messages for grid in Ring.abs.
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Figure 12: Avg. sent messages for grid in Ring.abs.

tensity into account result in less pronounced improvements over the pure
load balancing procedure. For a complete graph topology, differences are
once again small, but with a small edge towards the message intensity pro-
cedures.

5.4.4 Simulations of ChordDHT.abs

In the setup phase, a number of ServiceObject nodes are created and
joined. Then, every such object becomes associated with either a producer
object, which puts values into the DHT via the put method, or a consumer
object, which tries to retrieve them via the lookup method.

Figure 15 shows the standard deviation of the number of messages sent
for nodes when running the program on a hypergraph, and Figure 16 shows
the average number of messages. In both figures, the curves have been
smoothed out by averaging samples five at a time. The weighted neighbour’s
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Figure 13: Std. deviation of load for grid in Ring.abs.
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Figure 14: Object distance distribution for grid in Ring.abs.

load and message intensity strategy exhibited a tendency to quickly cause
message buffer overflows for this program, which is why we do not show
any results for it. The figures suggest that there is a reasonable payoff from
taking messaging into account in a migration strategy, even when running
a program with relatively complex communication patterns.

Simulations of ChordDHT.abs on a grid show very similar trends in per-
formance to the hypergraph case, but give a more pronounced advantage
to procedures which take message intensity into account, as for previous
programs. In a fully connected topology, the procedures result in effectively
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Figure 15: Std. dev. of sent messages for hypergraph in ChordDHT.abs.
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Figure 16: Avg. sent messages for hypergraph in ChordDHT.abs.

the same amount of messaging, as before.

5.4.5 Simulations of Star.abs on 64-Node Grid

We expected the improved performance with respect to messaging of algo-
rithms which consider message intensity to be greater on larger networks.
We therefore investigated how the star program performed on a 64-node
grid, with the number of star centers scaled up to 64. The resulting pro-
gram is called Star64.abs. The results were largely as expected, with a
larger discrepancy between the pure load balancing procedure as compared
to procedures which take messaging into account, as shown in Figure 17 and
Figure 18.
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Figure 17: Std. dev. of sent messages for 64-node grid in Star64.abs.

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

k transitions

m
es

sa
ge

s
se

n
t

av
g.

Berenbrink et al.

Berenbrink et al. w/ neutral, msg intensity
Weighted neighbour’s load, msg intensity

Figure 18: Avg. sent messages for 64-node grid in Star64.abs.

6 Conclusions and Future Work

The evaluation suggests that it is feasible in a decentralized setting to meet
the objective of balanced resource allocation, and also make headway to-
wards the objective of minimizing communication of distributed objects.
The main concern for our results being valid for real-world networks is the
use in our network model of unbounded message queues, and the lack of rate

30



limitation and latency controls in our simulator.
In future work, we plan to continue the theoretical and simulation-based

studies to deepen our understanding of multi-dimensional resource man-
agement, to improve the performance and accuracy of the simulator, and
to investigate adaptation in dynamic networks, initially only with benign
churn, i.e., with controlled startup and shutdown of nodes.
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